Hepatic and adipose tissue insulin resistance as a consequence of intermittent hypoxia are exacerbated by glucocorticoid receptor antagonism in man

2017 ◽  
Author(s):  
Jonathan Hazlehurst ◽  
Catriona Charlton ◽  
Diana Mantripp ◽  
Leanne Hodson ◽  
Jeremy Tomlinson
Metabolism ◽  
2007 ◽  
Vol 56 (3) ◽  
pp. 380-387 ◽  
Author(s):  
Bradley Zinker ◽  
Amanda Mika ◽  
Phong Nguyen ◽  
Denise Wilcox ◽  
Lars Öhman ◽  
...  

Endocrinology ◽  
2014 ◽  
Vol 156 (2) ◽  
pp. 437-443 ◽  
Author(s):  
Alba Carreras ◽  
Shelley X. L. Zhang ◽  
Isaac Almendros ◽  
Yang Wang ◽  
Eduard Peris ◽  
...  

Chronic intermittent hypoxia during sleep (IH), as occurs in sleep apnea, promotes systemic insulin resistance. Resveratrol (Resv) has been reported to ameliorate high-fat diet-induced obesity, inflammation, and insulin resistance. To examine the effect of Resv on IH-induced metabolic dysfunction, male mice were subjected to IH or room air conditions for 8 weeks and treated with either Resv or vehicle (Veh). Fasting plasma levels of glucose, insulin, and leptin were obtained, homeostatic model assessment of insulin resistance index levels were calculated, and insulin sensitivity tests (phosphorylated AKT [also known as protein kinase B]/total AKT) were performed in 2 visceral white adipose tissue (VWAT) depots (epididymal [Epi] and mesenteric [Mes]) along with flow cytometry assessments for VWAT macrophages and phenotypes (M1 and M2). IH-Veh and IH-Resv mice showed initial reductions in food intake with later recovery, with resultant lower body weights after 8 weeks but with IH-Resv showing better increases in body weight vs IH-Veh. IH-Veh and IH-Resv mice exhibited lower fasting glucose levels, but only IH-Veh had increased homeostatic model assessment of insulin resistance index vs all 3 other groups. Leptin levels were preserved in IH-Veh but were significantly lower in IH-Resv. Reduced VWAT phosphorylated-AKT/AKT responses to insulin emerged in both Mes and Epi in IH-Veh but normalized in IH-Resv. Increases total macrophage counts and in M1 to M2 ratios occurred in IH-Veh Mes and Epi compared all other 3 groups. Thus, Resv ameliorates food intake and weight gain during IH exposures and markedly attenuates VWAT inflammation and insulin resistance, thereby providing a potentially useful adjunctive therapy for metabolic morbidity in the context of sleep apnea.


2020 ◽  
Vol 11 ◽  
Author(s):  
Maider Varela-Guruceaga ◽  
Elise Belaidi ◽  
Lucie Lebeau ◽  
Ella Aka ◽  
Ramaroson Andriantsitohaina ◽  
...  

Repetitive complete or incomplete pharyngeal collapses are leading to chronic intermittent hypoxia (CIH), a hallmark feature of obstructive sleep apnea (OSA) syndrome responsible for many metabolic disorders. In humans, an association between OSA and insulin resistance has been found independently of the degree of obesity. Based on our previous work showing that hypoxia applied to adipocytes led to cellular insulin resistance associated with caveolae flattening, we have investigated the effects of CIH on caveolae structuration in adipose tissue. Original exploratory experiences demonstrate that 6 weeks-exposure of lean mice to CIH is characterized by systemic insulin resistance and translates into adipocyte insulin signaling alterations. Chronic intermittent hypoxia also induces caveolae disassembly in white adipose tissue (WAT) illustrated by reduced plasma membrane caveolae density and enlarged caveolae width, concomitantly to WAT insulin resistance state. We show that CIH downregulates caveolar gene and protein expressions, including cavin-1, cavin-2, and EHD2, underlying molecular mechanisms responsible for such caveolae flattening. Altogether, we provide evidences for adipose tissue caveolae disassembly following CIH exposure, likely linked to cavin protein downregulation. This event may constitute the molecular basis of insulin resistance development in OSA patients.


2017 ◽  
Vol 49 (4) ◽  
pp. 1601731 ◽  
Author(s):  
Aoife M. Murphy ◽  
Amandine Thomas ◽  
Sophie J. Crinion ◽  
Brian D. Kent ◽  
Murtaza M. Tambuwala ◽  
...  

Obstructive sleep apnoea (OSA) is increasingly associated with insulin resistance. The underlying pathophysiology remains unclear but intermittent hypoxia (IH)-mediated inflammation and subsequent dysfunction of the adipose tissue has been hypothesised to play a key role.We tested this hypothesis employing a comprehensive translational approach using a murine IH model of lean and diet-induced obese mice, an innovative IH system for cell cultures and a tightly controlled patient cohort.IH led to the development of insulin resistance in mice, corrected for the degree of obesity, and reduced insulin-mediated glucose uptake in 3T3-L1 adipocytes, associated with inhibition of the insulin-signalling pathway and downregulation of insulin-receptor substrate-1 mRNA. Providing mechanistic insight, IH induced a pro-inflammatory phenotype of visceral adipose tissue in mice with pro-inflammatory M1 macrophage polarisation correlating with the severity of insulin resistance. Complimentaryin vitroanalysis demonstrated that IH led to M1 polarisation of THP1-derived macrophages. In subjects without comorbidities (n=186), OSA was independently associated with insulin resistance. Furthermore, we found an independent correlation of OSA severity with the M1 macrophage inflammatory marker sCD163.This study provides evidence that IH induces a pro-inflammatory phenotype of the adipose tissue, which may be a crucial link between OSA and the development of insulin resistance.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1233
Author(s):  
Fátima O. Martins ◽  
Joana F. Sacramento ◽  
Elena Olea ◽  
Bernardete F. Melo ◽  
Jesus Prieto-Lloret ◽  
...  

Several studies demonstrated a link between obstructive sleep apnea (OSA) and the development of insulin resistance. However, the main event triggering insulin resistance in OSA remains to be clarified. Herein, we investigated the effect of mild and severe chronic intermittent hypoxia (CIH) on whole-body metabolic deregulation and visceral adipose tissue dysfunction. Moreover, we studied the contribution of obesity to CIH-induced dysmetabolic states. Experiments were performed in male Wistar rats submitted to a control and high-fat (HF) diet. Two CIH protocols were tested: A mild CIH paradigm (5/6 hypoxic (5% O2) cycles/h, 10.5 h/day) during 35 days and a severe CIH paradigm (30 hypoxic (5% O2) cycles, 8 h/day) during 15 days. Fasting glycemia, insulinemia, insulin sensitivity, weight, and fat mass were assessed. Adipose tissue hypoxia, inflammation, angiogenesis, oxidative stress, and metabolism were investigated. Mild and severe CIH increased insulin levels and induced whole-body insulin resistance in control animals, effects not associated with weight gain. In control animals, CIH did not modify adipocytes perimeter as well as adipose tissue hypoxia, angiogenesis, inflammation or oxidative stress. In HF animals, severe CIH attenuated the increase in adipocytes perimeter, adipose tissue hypoxia, angiogenesis, and dysmetabolism. In conclusion, adipose tissue dysfunction is not the main trigger for initial dysmetabolism in CIH. CIH in an early stage might have a protective role against the deleterious effects of HF diet on adipose tissue metabolism.


2019 ◽  
Author(s):  
Frederique Van de Velde ◽  
Margriet Ouwens ◽  
Arsene-Helene Batens ◽  
Samyah Shadid ◽  
Bruno Lapauw ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1760-P
Author(s):  
DON MCCLAIN ◽  
NEERAJ K. SHARMA ◽  
FELIPE LORENZO ◽  
SHALINI JAIN ◽  
CARL D. LANGEFELD ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document