An ex-vivo human placental model demonstrates that temporal fluctuations in maternal glucose in gestational diabetes alter placental transcriptome networks associated vascular development and angiogenesis

2021 ◽  
Author(s):  
Abigail Byford ◽  
Katy Walsh ◽  
Eleanor Scott ◽  
Karen Forbes
2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Gisele Seabra ◽  
Cláudia Saunders ◽  
Patrícia de Carvalho Padilha ◽  
Lenita Zajdenverg ◽  
Letícia Barbosa Gabriel da Silva ◽  
...  

2008 ◽  
Vol 294 (6) ◽  
pp. C1521-C1530 ◽  
Author(s):  
Shuji Kondo ◽  
Yixin Tang ◽  
Elizabeth A. Scheef ◽  
Nader Sheibani ◽  
Christine M. Sorenson

Apoptosis plays a critical role during development and in the maintenance of the vascular system. B-cell leukemia lymphoma 2 (bcl-2) protects endothelial cells (EC) from apoptosis in response to a variety of stimuli. Previous work from this laboratory demonstrated attenuation of postnatal retinal vascular development and retinal neovascularization during oxygen-induced ischemic retinopathy in bcl-2-deficient (bcl-2−/−) mice. To gain further insight into the function of bcl-2 in the endothelium, we isolated retinal EC from bcl-2+/+ and bcl-2−/− mice. Retinal EC lacking bcl-2 demonstrated reduced cell migration, tenascin-C expression, and adhesion to vitronectin and fibronectin. The bcl-2−/− retinal EC also failed to undergo capillary morphogenesis in Matrigel. In addition, using an ex vivo angiogenesis assay, we observed reduced sprouting from aortic rings grown in culture from bcl-2−/− mice compared with bcl-2+/+ mice. Furthermore, reexpression of bcl-2 was sufficient to restore migration and capillary morphogenesis defects observed in bcl-2−/− retinal EC. Mechanistically, bcl-2−/− cells expressed significantly less endothelial nitric oxide synthase, an important downstream effecter of proangiogenic signaling. This may be attributed to increased oxidative stress in the absence of bcl-2. In fact, incubation of retinal EC or aortic rings from bcl-2−/− mice with the antioxidant N-acetylcysteine rescued their capillary morphogenesis and sprouting defects. Thus, bcl-2-mediated cellular functions play important roles not only in survival but also in proangiogenic phenotype of EC with a significant impact on vascular development and angiogenesis.


Author(s):  
Jan Farrell ◽  
Jill M. Forrest ◽  
G. N. Bruce Storey ◽  
D. K. Yue ◽  
R. P. Shearman ◽  
...  

2019 ◽  
Author(s):  
Constanze M. Hammerle ◽  
Ionel Sandovici ◽  
Gemma V. Brierley ◽  
Nicola M. Smith ◽  
Warren E. Zimmer ◽  
...  

AbstractThe genetic mechanisms that determine the size of the adult pancreas are poorly understood. Here we demonstrate that many imprinted genes are highly expressed in the pancreatic mesenchyme, and explore the role of Igf2 in-vivo. Mesenchyme-specific Igf2 deletion results in acinar and beta-cell hypoplasia, postnatal whole-body growth restriction and maternal glucose intolerance during pregnancy. Surprisingly, mesenchymal mass is unaffected, suggesting that the mesenchyme is a developmental reservoir of IGF2 used for paracrine signalling. The unique actions of mesenchymal IGF2 are demonstrated by the absence of phenotypes upon Igf2 deletion in the developing pancreatic epithelium. Furthermore, increased IGF2 activity specifically in the mesenchyme, through Igf2 loss-of-imprinting or Igf2r deletion, leads to pancreatic acinar overgrowth. Ex-vivo exposure of primary acinar cells to exogenous IGF2 increases cell proliferation and amylase production through AKT signalling. We propose that mesenchymal Igf2, and perhaps other imprinted genes, are key developmental regulators of adult pancreas size and function.


2020 ◽  
Vol 30 (12) ◽  
pp. 2389-2397
Author(s):  
Sara Parrettini ◽  
Ludovica Ranucci ◽  
Antonella Caroli ◽  
Vittorio Bini ◽  
Riccardo Calafiore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document