scholarly journals The role of FOXO3 in DNA damage response in thyrocytes

2011 ◽  
Vol 18 (5) ◽  
pp. 555-564 ◽  
Author(s):  
Antje Klagge ◽  
Carl Weidinger ◽  
Kerstin Krause ◽  
Beate Jessnitzer ◽  
Monika Gutknecht ◽  
...  

Members of the forkhead box-O (FOXO) transcription factors family play an important role in stress defence. FOXO3 deregulation has recently been identified as a hallmark of thyroid carcinogenesis. In this study, we explore the role of FOXO3 in defence of oxidative stress in normal thyrocytes. Stable rat thyroid cell lines were generated expressing either the human wild-type FOXO3, a constitutively activating FOXO3 mutant, or the empty control vector. Cell clones were characterised for proliferation, function and morphology. Hydrogen peroxide and UV irradiation were used to induce oxidative stress. Changes in FOXO3 activity, induction of cell cycle arrest or apoptosis and kinetics of DNA damage repair were analysed. Upregulation of FOXO3 in thyrocytes resulted in decreased proliferation and changes in morphology, but did not affect differentiation. Hydrogen peroxide stimulated the expression of the FOXO3 target genes growth arrest and DNA damage-inducible protein 45 α (Gadd45α) and Bcl-2 interacting mediator of cell death (BIM) and induced programmed cell death in cells with overexpression of the human wild-type FOXO3. In contrast, UV irradiation resulted in a distinct cellular response with activation of FOXO3-c-Jun-N-terminal kinase-Gadd45α signalling and induction of cell cycle arrest at the G2-M-checkpoint. This was accompanied by FOXO3-induced DNA damage repair as evidenced by lower DNA breaks over time in a comet assay in FOXO3 cell clones compared with control cells. In conclusion, FOXO3 is a pivotal relay in the coordination of the cellular response to genotoxic stress in the thyroid. Depending on the stimulus, FOXO3 induces either cell cycle arrest or apoptosis. Conversely, FOXO3 inactivation in thyroid cancers is consistent with genomic instability and loss of cell cycle control.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 808-808
Author(s):  
Mrinal Y. Shah ◽  
Eva Martinez ◽  
Relja Popovic ◽  
Teresa Ezponda ◽  
Eliza C. Small ◽  
...  

Abstract MMSET/WHSC1 is a histone methyltransferase (HMT) overexpressed in t(4;14)+ multiple myeloma (MM) patients, and is believed to be the driving factor in the pathogenesis of this subtype of MM. Overexpression of MMSET also occurs in solid cancers, including neuroblastoma, colon and prostate. MMSET overexpression in MM and prostate cells leads to an increase in histone 3 lysine 36 dimethylation (H3K36me2), and a decrease in histone 3 lysine 27 trimethylation (H3K27me3). This altered epigenetic landscape is accompanied by changes in proliferation, gene expression, and chromatin accessibility. Prior work linked methylation of histones, including H3K36, to the ability of cells to undergo DNA damage repair. In addition, t(4;14)+ patients frequently relapse after regimens that include DNA damage-inducing agents, suggesting that MMSET might play a role in DNA damage repair and response. To investigate the role of MMSET in DNA damage repair, we transfected U2OS cells with a linearized vector expressing a neomycin-resistant gene. In the presence of G418, only cells that are able to integrate this plasmid through non-homologous end joining (NHEJ) can survive. siRNA knockdown of MMSET led to a decrease in cell survival, suggesting that MMSET is necessary for efficient DNA repair. We also used U2OS cells engineered to express the AsiSI enzyme fused to an estrogen receptor hormone-binding domain. Upon tamoxifen treatment, double strand breaks (DSBs) are induced at multiple AsiSI recognition sites, accompanied by an increase in γH2AX foci. The extent of repair after AsiSI-induced damage was ascertained by the ability of a DNA fragment that spans a specific cut site to be PCR amplified. With MMSET knockdown, there was a >10 fold increase in unrepaired DNA. ChIP analysis showed that with the depletion of MMSET, γH2AX persisted at the cut site. ChIP for specific effectors of DNA damage showed a marked decrease of recruitment of CtIP and RAD51 to the DSB. However, immunoblot analysis showed that CtIP and RAD51 levels were drastically decreased with MMSET depletion, thus explaining the loss of their recruitment to DSBs. In contrast, XRCC4 levels were maintained with MMSET siRNA, but its recruitment to the DSB decreased. CtIP is important for both NHEJ and homologous recombination (HR), RAD51 is critical for HR, and XRCC4 is necessary for NHEJ, suggesting that MMSET is important in multiple pathways of DNA repair. To study the effect of MMSET in MM, we used the t(4;14)+ KMS11 cell line, NTKO, and genetically matched TKO cells in which the overexpressed MMSET allele was knocked out. NTKO cells have elevated levels of DNA damage at baseline, as measured by a comet assay and by the presence of elevated numbers of 53BP1-positive foci. Upon addition of the DNA damaging agent melphalan, NTKO cells showed increased damage as measured by an increase in the tail moment by the comet assay. Paradoxically, upon treatment of these cells with the DNA damaging agents, NTKO cells survived better than TKO cells. NTKO repaired DNA damage at an enhanced rate and continued to proliferate after a significant DNA damage insult, whereas TKO cells accumulated DNA damage and entered cell cycle arrest. We repleted TKO cells with constructs expressing either wild-type MMSET or an HMT-dead (Y1118A) isoform. Upon treatment, cells expressing the wild-type MMSET have showed enhanced DNA repair and continued proliferation after DNA damage, whereas cells expressing the HMT-dead protein repaired DNA damage more slowly and entered cell cycle arrest. The HMT activity of MMSET was critical for the induction of expression of genes required for multiple DNA repair pathways including CHEK2, DDB2, DDIT3, RAD51, and MRE11, again suggesting that MMSET modulates DNA repair by affecting expression of critical components of the repair machinery. The clinical relevance of these finds becomes more apparent in vivo. Luciferase-tagged KMS11 cells harboring doxycycline-inducible MMSET shRNA were injected into nude mice. After one week, mice were treated with doxycycline and injected with melphalan or saline. Knockdown of MMSET or melphalan treatment alone decreased tumor growth but eventually all mice had progressive disease. Only when MMSET was knocked down and chemotherapy given were the mice rendered tumor free. These findings indicate a new mechanism for the ability of MMSET to enhance DNA repair and identify the protein as a potential therapeutic target in MM and other cancers. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 29 (10) ◽  
pp. 2828-2840 ◽  
Author(s):  
Michalis Fragkos ◽  
Jaana Jurvansuu ◽  
Peter Beard

ABSTRACT Phosphorylation of H2AX (γH2AX) is an early sign of DNA damage induced by replication stalling. However, the role of H2AX in the repair of this type of DNA damage is still unclear. In this study, we used an inactivated adeno-associated virus (AAV) to induce a stalled replication fork signal and investigate the function of γH2AX. The cellular response to AAV provides a unique model to study γH2AX function, because the infection causes pannuclear H2AX phosphorylation without any signs of damage to the host genome. We found that pannuclear γH2AX formation is a result of ATR overactivation and diffusion but is independent of ATM. The inhibition of H2AX with RNA interference or the use of H2AX-deficient cells showed that γH2AX is dispensable for the formation and maintenance of DNA repair foci induced by stalled replication. However, in the absence of H2AX, the AAV-containing cells showed proteosome-dependent degradation of p21, followed by caspase-dependent mitotic catastrophe. In contrast, H2AX-proficient cells as well as H2AX-complemented H2AX−/− cells reacted by increasing p21 levels and arresting the cell cycle. The results establish a new role for H2AX in the p53/p21 pathway and indicate that H2AX is required for p21-induced cell cycle arrest after replication stalling.


Development ◽  
1998 ◽  
Vol 125 (16) ◽  
pp. 3225-3234
Author(s):  
S.A. Moallem ◽  
B.F. Hales

The exposure of embryonic murine limbs in vitro to an activated analog of cyclophosphamide, 4-hydroperoxycyclophosphamide (4OOH-CPA), induced limb malformations and apoptosis. The purpose of this study was to investigate the role of the tumor suppressor/cell cycle checkpoint gene, p53, and of cell cycle arrest in the response of the limbs to cyclophosphamide. Limbs, excised on day 12 of gestation from wild-type, heterozygous or homozygous p53-knockout transgenic murine embryos, were treated with vehicle (water) or 4OOH-CPA (0.3, 1.0 or 3.0 microgram/ml) and cultured for 6 days. Exposure of wild-type (+/+) limbs to 4OOH-CPA resulted in limb malformations, and reduced limb areas and developmental scores. The homozygous (−/−) limbs were dramatically more sensitive to the effects of 4OOH-CPA, as assessed by limb morphology, area and score. Heterozygous limbs exposed to the drug were intermediate for each parameter. Apoptosis, as assessed by the formation of a DNA ladder, was increased in drug-exposed wild-type limbs, but not in the drug-exposed homozygous limbs. Light and electron microscopy examination of the limbs revealed that drug treatment of wild-type limbs induced the morphological changes typical of apoptosis, particularly in the interdigital regions. In contrast, there was no evidence of apoptosis in homozygous limbs exposed to 4-OOH-CPA; morphological characteristics of necrosis such as cell membrane breakdown, mitochondrial swelling and cellular disintegration were evident throughout these limbs. Heterozygous limbs had cells dying with the characteristics of both apoptosis and necrosis. Fragments of poly(ADP-ribose) polymerase characteristic of necrosis predominated in the drug-treated heterozygous and homozygous limbs. 4-OOH-CPA-treatment of limbs from wild-type embryos led to arrest of the cell cycle at the G1/S phase. No cell cycle arrest was observed after drug treatment of homozygous limbs, in which populations of cells in S and G2/M phases, as well as a population of sub G1 cells, were found. Thus, the presence of p53 and of p53-dependent apoptosis protect organogenesis-stage limbs from insult with a teratogen. The absence of p53 may decrease DNA repair capacity and contribute to the accumulation of DNA damage in limb cells and their daughter cells; the failure of apoptosis to eliminate cells with DNA damage may result in increased cell death by necrosis and major limb malformations.


2017 ◽  
Vol 37 (3) ◽  
pp. 413-426 ◽  
Author(s):  
Shir Barshishat ◽  
Maya Elgrably‐Weiss ◽  
Jonathan Edelstein ◽  
Jens Georg ◽  
Sutharsan Govindarajan ◽  
...  

2009 ◽  
Vol 29 (16) ◽  
pp. 4341-4351 ◽  
Author(s):  
Vanesa Lafarga ◽  
Ana Cuadrado ◽  
Isabel Lopez de Silanes ◽  
Rocio Bengoechea ◽  
Oscar Fernandez-Capetillo ◽  
...  

ABSTRACT Activation of p38 mitogen-activated protein kinase (MAPK) plays an important role in the G2/M cell cycle arrest induced by DNA damage, but little is known about the role of this signaling pathway in the G1/S transition. Upregulation of the cyclin-dependent kinase inhibitor p21Cip1 is thought to make a major contribution to the G1/S cell cycle arrest induced by γ radiation. We show here that inhibition of p38 MAPK impairs p21Cip1 accumulation and, as a result, the ability of cells to arrest in G1 in response to γ radiation. We found that p38 MAPK induces p21Cip1 mRNA stabilization, without affecting its transcription or the stability of the protein. In particular, p38 MAPK phosphorylates the mRNA binding protein HuR on Thr118, which results in cytoplasmic accumulation of HuR and its enhanced binding to the p21Cip1 mRNA. Our findings help to understand the emerging role of p38 MAPK in the cellular responses to DNA damage and reveal the existence of p53-independent networks that cooperate in modulating p21Cip1 levels at the G1/S checkpoint.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 466 ◽  
Author(s):  
Harikrishnareddy Paluvai ◽  
Eros Di Giorgio ◽  
Claudio Brancolini

Senescence is the end point of a complex cellular response that proceeds through a set of highly regulated steps. Initially, the permanent cell-cycle arrest that characterizes senescence is a pro-survival response to irreparable DNA damage. The maintenance of this prolonged condition requires the adaptation of the cells to an unfavorable, demanding and stressful microenvironment. This adaptation is orchestrated through a deep epigenetic resetting. A first wave of epigenetic changes builds a dam on irreparable DNA damage and sustains the pro-survival response and the cell-cycle arrest. Later on, a second wave of epigenetic modifications allows the genomic reorganization to sustain the transcription of pro-inflammatory genes. The balanced epigenetic dynamism of senescent cells influences physiological processes, such as differentiation, embryogenesis and aging, while its alteration leads to cancer, neurodegeneration and premature aging. Here we provide an overview of the most relevant histone modifications, which characterize senescence, aging and the activation of a prolonged DNA damage response.


2020 ◽  
Author(s):  
Antonio Solis-Leal ◽  
Dalton C. Karlinsey ◽  
J. Brandon Lopez ◽  
Vicente Planelles ◽  
Brian D. Poole ◽  
...  

Abstract Background: Acquired immunodeficiency syndrome (AIDS) is caused when HIV depletes CD4+ helper T cell levels in infected patients. Distinct AIDS development rates have shown that there are Rapid Progressor (RP) and Long-Term Non-Progressor (LTNP) patients, but the circumstances governing these differences in the kinetics of helper T cell depletion are poorly understood. Mutations in the Viral Protein R (Vpr) gene have been suggested to have a direct impact on helper T cell depletion. Interactions of Vpr with both host and viral factors affect cellular activities such as cell cycle progression and apoptosis. The Vpr mutants R36W and R77Q have been associated with RP and LTNP phenotypes, respectively; however, these findings are still controversial. This study examines the effects that Vpr mutations have in the context of HIV-1 infection of the HUT78 T cell line, using replication-competent CXCR4-tropic virus strains. Results: Our results show a replication enhancement of the R36W mutant accompanied by increased cytotoxicity. Interestingly, the R77Q mutant showed a unique enhancement of apoptosis (measured by Annexin V and TUNEL staining) and G2 cell cycle arrest; these effects were not seen with WT, R36W or Vpr null viruses. Thus, point mutations in Vpr can exhibit profound differences in mechanisms and rates of cell killing. Conclusions: The vpr gene is thought to be an important virulence factor in Human Immunodeficiency Virus type 1 (HIV-1). Vpr polymorphisms have been associated with different rates of AIDS progression. However, there is controversy about the cytopathic and virulence phenotypes of Vpr mutants, with contradictory conclusions about the same mutants. Here, we examine the replication capacity, apoptotic induction, and G2 cell cycle arrest phenotypes of three vpr mutants compared to wild-type HIV-1. One mutant associated with rapid AIDS progression replicated more efficiently and killed cells more rapidly than wild-type HIV-1. Another mutant associated with slow AIDS progression triggered apoptosis more efficiently than wild-type HIV-1 and showed significant levels of G2 cell cycle arrest. These results shed additional light on the role of vpr polymorphisms in T cell killing by HIV-1 and may help to explain the role of Vpr in different rates of AIDS progression.


Author(s):  
Francesco Pezzella ◽  
Omanma Adighibe

Following an event damaging the DNA, p53 levels increases inducing cell cycle arrest or apoptosis. JMY protein is a transcription co-factor involved in p53 regulation. After a DNA damage, also JMY levels increase and, as this protein accumulates in the nucleus, it forms a complex with P300 and Strap1 which increases the ability of p53 to induce transcription of proteins triggering apoptosis but not cell cycle. Therefore, Increase levels of JMY “direct” p53 activity toward triggering apoptosis. JMY expression is also linked to increased motility as it downregulates the expression of adhesion molecules of the Cadherin family and induces actin nucleation, making the cell less adhesive and more mobile. According to the scenario this gene can therefore have both a suppressive or a tumour promoting activity.


1996 ◽  
Vol 7 (5) ◽  
pp. 703-718 ◽  
Author(s):  
G L Kiser ◽  
T A Weinert

In eukaryotic cells, checkpoint genes cause arrest of cell division when DNA is damaged or when DNA replication is blocked. In this study of budding yeast checkpoint genes, we identify and characterize another role for these checkpoint genes after DNA damage-transcriptional induction of genes. We found that three checkpoint genes (of six genes tested) have strong and distinct roles in transcriptional induction in four distinct pathways of regulation (each defined by induction of specific genes). MEC1 mediates the response in three transcriptional pathways, RAD53 mediates two of these pathways, and RAD17 mediates but a single pathway. The three other checkpoint genes (including RAD9) have small (twofold) but significant roles in transcriptional induction in all pathways. One of the pathways that we identify here leads to induction of MEC1 and RAD53 checkpoint genes themselves. This suggests a positive feedback circuit that may increase the cell's ability to respond to DNA damage. We make two primary conclusions from these studies. First, MEC1 appears to be the key regulator because it is required for all responses (both transcriptional and cell cycle arrest), while other genes serve only a subset of these responses. Second, the two types of responses, transcriptional induction and cell cycle arrest, appear distinct because both require MEC1 yet only cell cycle arrest requires RAD9. These and other results were used to formulate a working model of checkpoint gene function that accounts for roles of different checkpoint genes in different responses and after different types of damage. The conclusion that the yeast MEC1 gene is a key regulator also has implications for the role of a putative human homologue, the ATM gene.


Sign in / Sign up

Export Citation Format

Share Document