scholarly journals Novel insights in cell cycle dysregulation during prostate cancer progression

2021 ◽  
Author(s):  
Salma Ben-Salem ◽  
Varadha Balaji Venkadakrishnan ◽  
Hannelore V Heemers

Prostate cancer (CaP) remains the second leading cause of cancer deaths in western men. These deaths occur because metastatic CaP acquires resistance to available treatments. The novel and functionally diverse treatment options that have been introduced in the clinic over the past decade each eventually induce resistance for which the molecular basis is diverse. Both initiation and progression of CaP have been associated with enhanced cell proliferation and cell cycle dysregulation. A better understanding of the specific pro-proliferative molecular shifts that control cell division and proliferation during CaP progression may ultimately overcome treatment resistance. Here, we examine literature for support of this possibility. We start by reviewing recently renewed insights in prostate cell types and their proliferative and oncogenic potential. We then provide an overview of the basic knowledge on the molecular machinery in charge of cell cycle progression and its regulation by well-recognized drivers of CaP progression such as androgen receptor and retinoblastoma protein. In this respect, we pay particular attention to interactions and reciprocal interplay between cell cycle regulators and androgen receptor. Somatic alterations that impact the cell cycle-associated and -regulated genes encoding p53, PTEN and MYC during progression from treatment-naïve, to castration-recurrent, and in some cases, neuroendocrine CaP are discussed. We considered also non-genomic events that impact cell cycle determinants, including transcriptional, epigenetic and micro-environmental switches that occur during CaP progression. Finally, we evaluate the therapeutic potential of cell cycle regulators, and address challenges and limitations approaches modulating their action, for CaP treatment.

2021 ◽  
Author(s):  
Salma Ben-Salem ◽  
Varadha Balaji Venkadakrishnan ◽  
Hannelore V Heemers

The recent genomic characterization of patient specimens has started to reveal the landscape of somatic alterations in clinical prostate cancer (CaP) and its association with disease progression and treatment resistance. The extent to which such alterations impact hallmarks of cancer is still unclear. Here, we interrogate genomic data from thousands of clinical CaP specimens that reflect progression from treatment-naïve, to castration-recurrent, and in some cases, neuroendocrine CaP for alterations in cell cycle-associated and -regulated genes, which are central to cancer initiation and progression. We evaluate gene signatures previously curated to evaluate G1-S and G2-M phase transitions or to represent the cell cycle-dependent proteome. The resulting CaP (stage)-specific overview confirmed the presence of well-known driver alterations impacting for instance the genes encoding p53 and MYC, and uncovered novel previously unrecognized mutations that affect others such as the PKMYT1 and MTBP genes. The cancer dependency and drugability of representative genomically altered cell cycle determinants was verified also. Taken together, these analyses on hundreds of often less-characterized cell cycle regulators expand considerably the scope of genomic alterations associated with CaP cell proliferation and cell cycle, and isolate such regulatory proteins as putative drivers of CaP treatment resistance and entirely novel therapeutic targets for CaP therapy.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2563
Author(s):  
Mayuko Kanayama ◽  
Changxue Lu ◽  
Jun Luo ◽  
Emmanuel S. Antonarakis

Over the past decade, advances in prostate cancer research have led to discovery and development of novel biomarkers and effective treatments. As treatment options diversify, it is critical to further develop and use optimal biomarkers for the purpose of maximizing treatment benefit and minimizing unwanted adverse effects. Because most treatments for prostate cancer target androgen receptor (AR) signaling, aberrations affecting this drug target are likely to emerge following the development of castration-resistant prostate cancer (CRPC), and it is conceivable that such aberrations may play a role in drug resistance. Among the many AR aberrations, we and others have been studying androgen receptor splice variants (AR-Vs), especially AR-V7, and have conducted preclinical and clinical studies to develop and validate the clinical utility of AR-V7 as a prognostic and potential predictive biomarker. In this review, we first describe mechanisms of AR-V generation, regulation and their functions from a molecular perspective. We then discuss AR-Vs from a clinical perspective, focusing on the significance of AR-Vs detected in different types of human specimens and AR-Vs as potential therapeutic targets.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1212
Author(s):  
Getinet M. Adinew ◽  
Equar Taka ◽  
Patricia Mendonca ◽  
Samia S. Messeha ◽  
Karam F. A. Soliman

Triple- negative breast cancer (TNBC) incidence rate has regularly risen over the last decades and is expected to increase in the future. Finding novel treatment options with minimum or no toxicity is of great importance in treating or preventing TNBC. Flavonoids are new attractive molecules that might fulfill this promising therapeutic option. Flavonoids have shown many biological activities, including antioxidant, anti-inflammatory, and anticancer effects. In addition to their anticancer effects by arresting the cell cycle, inducing apoptosis, and suppressing cancer cell proliferation, flavonoids can modulate non-coding microRNAs (miRNAs) function. Several preclinical and epidemiological studies indicate the possible therapeutic potential of these compounds. Flavonoids display a unique ability to change miRNAs’ levels via different mechanisms, either by suppressing oncogenic miRNAs or activating oncosuppressor miRNAs or affecting transcriptional, epigenetic miRNA processing in TNBC. Flavonoids are not only involved in the regulation of miRNA-mediated cancer initiation, growth, proliferation, differentiation, invasion, metastasis, and epithelial-to-mesenchymal transition (EMT), but also control miRNAs-mediated biological processes that significantly impact TNBC, such as cell cycle, immune system, mitochondrial dysregulation, modulating signaling pathways, inflammation, and angiogenesis. In this review, we highlighted the role of miRNAs in TNBC cancer progression and the effect of flavonoids on miRNA regulation, emphasizing their anticipated role in the prevention and treatment of TNBC.


2013 ◽  
Vol 12 (11) ◽  
pp. 2342-2355 ◽  
Author(s):  
Christian Thomas ◽  
Francois Lamoureux ◽  
Claire Crafter ◽  
Barry R. Davies ◽  
Eliana Beraldi ◽  
...  

2002 ◽  
pp. 155-170 ◽  
Author(s):  
Z Culig ◽  
H Klocker ◽  
G Bartsch ◽  
A Hobisch

The androgen receptor (AR), a transcription factor that mediates the action of androgens in target tissues, is expressed in nearly all prostate cancers. Carcinoma of the prostate is the most frequently diagnosed neoplasm in men in industrialized countries. Palliative treatment for non-organ-confined prostate cancer aims to down-regulate the concentration of circulating androgen or to block the transcription activation function of the AR. AR function during endocrine therapy was studied in tumor cells LNCaP subjected to long-term steroid depletion; newly generated sublines could be stimulated by lower concentrations of androgen than parental cells and showed up-regulation of AR expression and activity as well as resistance to apoptosis. Androgenic hormones regulate the expression of key cell cycle regulators, cyclin-dependent kinase 2 and 4, and that of the cell cycle inhibitor p27. Inhibition of AR expression could be achieved by potential chemopreventive agents flufenamic acid, resveratrol, quercetin, polyunsaturated fatty acids and interleukin-1beta, and by the application of AR antisense oligonucleotides. In the clinical situation, AR gene amplification and point mutations were reported in patients with metastatic disease. These mutations generate receptors which could be activated by other steroid hormones and non-steroidal antiandrogens. In the absence of androgen, the AR could be activated by various growth-promoting (growth factors, epidermal growth factor receptor-related oncogene HER-2/neu) and pleiotropic (protein kinase A activators, interleukin-6) compounds as well as by inducers of differentiation (phenylbutyrate). AR function is modulated by a number of coactivators and corepressors. The three coactivators, TIF-2, SRC-1 and RAC3, are up-regulated in relapsed prostate cancer. New experimental therapies for prostate cancer are aimed to down-regulate AR expression and to overcome difficulties which occur because of the acquisition of agonistic properties of commonly used antiandrogens.


Sign in / Sign up

Export Citation Format

Share Document