scholarly journals Insulin-regulated aminopeptidase inhibitors do not alter glucose handling in normal and diabetic rats

2017 ◽  
Vol 58 (4) ◽  
pp. 193-198 ◽  
Author(s):  
Anthony L Albiston ◽  
Mauricio Cacador ◽  
Puspha Sinnayah ◽  
Peta Burns ◽  
Siew Yeen Chai

Insulin-regulated aminopeptidase (IRAP) co-localizes with the glucose transporter 4 (GLUT4) in GLUT4 storage vesicles (GSV) in insulin-responsive cells. In response to insulin, IRAP is the only transmembrane enzyme known to translocate together with GLUT4 to the plasma membrane in adipocytes and muscle cells. Although the intracellular region of IRAP is associated with GLUT4 vesicle trafficking, the role of the aminopeptidase activity in insulin-responsive cells has not been elucidated. The aim of this study was to investigate whether the inhibition of the aminopeptidase activity of IRAP facilitates glucose uptake in insulin-responsive cells. In both in vitro and in vivo studies, inhibition of IRAP aminopeptidase activity with the specific inhibitor, HFI-419, did not modulate glucose uptake. IRAP inhibition in the L6GLUT4myc cell line did not alter glucose uptake in both basal and insulin-stimulated state. In keeping with these results, HFI419 did not affect peripheral, whole-body glucose handling after an oral glucose challenge, neither in normal rats nor in the streptozotocin (STZ)-induced experimental rat model of diabetes mellitus (DM). Therefore, acute inhibition of IRAP aminopeptidase activity does not affect glucose homeostasis.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Md Badrul Alam ◽  
Hongyan An ◽  
Jeong-Sic Ra ◽  
Ji-young Lim ◽  
Seung-Hyun Lee ◽  
...  

Glucose absorption from the gut and glucose uptake into muscles are vital for the regulation of glucose homeostasis. In the current study, we determined if gossypol (GSP) reduces postprandial hyperglycemia or enhances glucose uptake; we also investigated the molecular mechanisms underlying those processes in vitro and in vivo. GSP strongly and concentration dependently inhibited α-glucosidase by functioning as a competitive inhibitor with IC50 value of 0.67 ± 0.44. GSP activated the insulin receptor substrate 1 (IRS-1)/protein kinase B (Akt) signaling pathways and enhanced glucose uptake through the translocation of glucose transporter 4 (GLUT4) into plasma membrane in C2C12 myotubes. Pretreatment with a specific inhibitor attenuated the in vitro effects of GSP. We used a streptozotocin-induced diabetic mouse model to assess the antidiabetic potential of GSP. Consistent with the in vitro study, a higher dose of GSP (2.5 mg/kg−1) dramatically decreased the postprandial blood glucose levels associated with the upregulated expressions of GLUT4 and the IRS-1/Akt-mediated signaling cascade in skeletal muscle. GSP treatment also significantly boosted antioxidant enzyme expression and mitigated gluconeogenesis in the liver. Collectively, these data imply that GSP has the potential in managing and preventing diabetes by ameliorating glucose uptake and improving glucose homeostasis.


Author(s):  
Cécile Bétry ◽  
Aline V. Nixon ◽  
Paul L. Greenhaff ◽  
Elizabeth J. Simpson

Abstract Introduction Skeletal muscle is a major site for whole-body glucose disposal, and determination of skeletal muscle glucose uptake is an important metabolic measurement, particularly in research focussed on interventions that impact muscle insulin sensitivity. Calculating arterial-venous difference in blood glucose can be used as an indirect measure for assessing glucose uptake. However, the possibility of multiple tissues contributing to the composition of venous blood, and the differential in glucose uptake kinetics between tissue types, suggests that sampling from different vein sites could influence the estimation of glucose uptake. This study aimed to determine the impact of venous cannula position on calculated forearm glucose uptake following an oral glucose challenge in resting and post-exercise states. Materials and Methods In 9 young, lean, males, the impact of sampling blood from two antecubital vein positions; the perforating vein (‘perforating’ visit) and, at the bifurcation of superficial and perforating veins (‘bifurcation’ visit), was assessed. Brachial artery blood flow and arterialised-venous and venous blood glucose concentrations were measured in 3 physiological states; resting-fasted, resting-fed, and fed following intermittent forearm muscle contraction (fed-exercise). Results Following glucose ingestion, forearm glucose uptake area under the curve was greater for the ‘perforating’ than for the ‘bifurcation’ visit in the resting-fed (5.92±1.56 vs. 3.69±1.35 mmol/60 min, P<0.01) and fed-exercise (17.38±7.73 vs. 11.40±7.31 mmol/75 min, P<0.05) states. Discussion Antecubital vein cannula position impacts calculated postprandial forearm glucose uptake. These findings have implications for longitudinal intervention studies where serial determination of forearm glucose uptake is required.


1989 ◽  
Vol 256 (5) ◽  
pp. E624-E630 ◽  
Author(s):  
H. Nishimura ◽  
H. Kuzuya ◽  
M. Okamoto ◽  
K. Yamada ◽  
A. Kosaki ◽  
...  

To clarify the mechanism(s) responsible for the insulin resistance in streptozotocin (STZ)-treated diabetic rats, we studied insulin-induced glucose disposal by using the glucose clamp technique and measured insulin receptor and glucose transporter of muscles. The insulin dose-response curve of the metabolic clearance rate (MCR) of glucose revealed a decrease of the maximal response without a rightward shift in STZ rats. Maximal MCR was even lower when clamped at 300 rather than 150 mg/dl of blood glucose levels. Insulin binding to the crude plasma membrane of muscles from STZ rats was increased compared with controls. The number of glucose transporter of the plasma and microsomal membranes were significantly decreased in STZ rats. These in vivo and in vitro studies using skeletal muscles suggest that in STZ-treated diabetic rats 1) a defect or defects exist in the signal transduction mechanism of insulin in postbinding steps, 2) the decreased maximal MCR is related at least partly to the decrease of glucose transporter numbers, and 3) a defect in glucose metabolism (postglucose transport defect) is also present.


1988 ◽  
Vol 254 (1) ◽  
pp. E23-E30 ◽  
Author(s):  
G. M. Reaven ◽  
H. Chang ◽  
H. Ho ◽  
C. Y. Jeng ◽  
B. B. Hoffman

Both nicotinic acid (NA) and the adenosine receptor agonist phenylisopropyladenosine (PIA) are potent antilipolytic agents. We have evaluated the ability of these compounds to lower plasma glucose concentration in 450-g male diabetic rats. Diabetes was induced by intravenous streptozotocin, and the rats were studied 7-10 days later. Mean (+/- SE) fasting glucose decreased 4 h after subcutaneous injections of PIA at 0 and 2 h. A similar change in plasma glucose level was also seen in rats injected with NA. The decrease in the concentration of plasma glucose in both instances was preceded by marked sustained reductions in plasma free fatty acid (FFA) concentrations; FFA decreased in PIA-injected rats and in response to NA. With injection of normal saline, neither plasma glucose nor FFA concentrations decreased in diabetic rats. There was no change in the plasma insulin concentration of rats that had hypoglycemic responses to PIA or NA. In vitro glucose uptake was determined in isolated adipocytes, and both PIA and NA were shown to increase basal and maximal insulin-stimulated glucose uptake. The stimulating effect of the two compounds was similar, and the magnitude of the effect was comparable in adipocytes from either normal or diabetic rats. As a result, neither NA nor PIA could restore the defects in glucose transport to normal in adipocytes from diabetic rats. Insulin-stimulated glucose uptake was assessed in vivo by determining the steady-state glucose response of diabetic rats to a continuous infusion of insulin and glucose and was found to be significantly enhanced in response to NA compared with NaCl.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
S. E. Hurst ◽  
S. C. Minkin ◽  
J. Biggerstaff ◽  
M. S. Dhar

Atp10cis a strong candidate gene for diet-induced obesity and type 2 diabetes. To identify molecular and cellular targets of ATP10C,Atp10cexpression was alteredin vitroin C2C12 skeletal muscle myotubes by transient transfection with anAtp10c-specific siRNA. Glucose uptake assays revealed that insulin stimulation caused a significant 2.54-fold decrease in 2-deoxyglucose uptake in transfected cells coupled with a significant upregulation of native mitogen-activated protein kinases (MAPKs), p38, and p44/42. Additionally, glucose transporter-1 (GLUT1) was significantly upregulated; no changes in glucose transporter-4 (GLUT4) expression were observed. The involvement of MAPKs was confirmed using the specific inhibitor SB203580, which downregulated the expression of native and phosphorylated MAPK proteins in transfected cells without any changes in insulin-stimulated glucose uptake. Results indicate thatAtp10cregulates glucose metabolism, at least in part via the MAPK pathway, and, thus, plays a significant role in the development of insulin resistance and type 2 diabetes.


2020 ◽  
Vol 99 (8) ◽  
pp. 977-986
Author(s):  
H. Ida-Yonemochi ◽  
K. Otsu ◽  
H. Harada ◽  
H. Ohshima

Glucose is an essential source of energy for mammalian cells and is transported into the cells by glucose transporters. There are 2 types of glucose transporters: one is a passive glucose transporter, GLUT ( SLC2A), and the other is a sodium-dependent active glucose transporter, SGLT ( SLC5A). We previously reported that the expression of GLUTs during tooth development is precisely and spatiotemporally controlled and that the glucose uptake mediated by GLUT1 plays a crucial role in early tooth morphogenesis and tooth size determination. This study aimed to clarify the localization and roles of SGLT1 and SGLT2 in murine ameloblast differentiation by using immunohistochemistry, immunoelectron microscopy, an in vitro tooth organ culture experiment, and in vivo administration of an inhibitor of SGLT1/2, phloridzin. SGLT1, which has high affinity with glucose, was immunolocalized in the early secretory ameloblasts and the ruffle-ended ameloblasts in the maturation stage. However, SGLT2, which has high glucose transport capacity, was observed in the stratum intermedium, papillary layer, and ameloblasts at the maturation stage and colocalized with Na+-K+-ATPase. The inhibition of SGLT1/2 by phloridzin in the tooth germs induced the disturbance of ameloblast differentiation and enamel matrix formation both in vitro (organ culture) and in vivo (mouse model). The expression of SGLT1 and SGLT2 was significantly upregulated in hypoxic conditions in the ameloblast-lineage cells. These findings suggest that the active glucose uptake mediated by SGLT1 and SGLT2 is strictly regulated and dependent on the intra- and extracellular microenvironments during tooth morphogenesis and that the appropriate passive and active glucose transport is an essential event in amelogenesis.


2013 ◽  
Vol 24 (16) ◽  
pp. 2544-2557 ◽  
Author(s):  
L. Amanda Sadacca ◽  
Joanne Bruno ◽  
Jennifer Wen ◽  
Wenyong Xiong ◽  
Timothy E. McGraw

Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hye Kyung Kim

Aims of study. Present study investigated the effect ofEcklonia cava(EC) on intestinal glucose uptake and insulin secretion.Materials and methods. Intestinal Na+-dependent glucose uptake (SGU) and Na+-dependent glucose transporter 1 (SGLT1) protein expression was determined using brush border membrane vesicles (BBMVs). Glucose-induced insulin secretion was examined in pancreatic β-islet cells. The antihyperglycemic effects of EC, SGU, and SGLT1 expression were determined in streptozotocin (STZ)-induced diabetic mice.Results. Methanol extract of EC markedly inhibited intestinal SGU of BBMV with the IC50value of 345 μg/mL. SGLT1 protein expression was dose dependently down regulated with EC treatment. Furthermore, insulinotrophic effect of EC extract was observed at high glucose media in isolated pancreatic β-islet cellsin vitro. We next conducted the antihyperglycemic effect of EC in STZ-diabetic mice. EC supplementation markedly suppressed SGU and SGLT1 abundance in BBMV from STZ mice. Furthermore, plasma insulin level was increased by EC treatment in diabetic mice. As a result, EC supplementation improved postprandial glucose regulation, assessed by oral glucose tolerance test, in diabetic mice.Conclusion. These results suggest that EC play a role in controlling dietary glucose absorption at the intestine and insulinotrophic action at the pancreas contributing blood glucose homeostasis in diabetic condition.


Author(s):  
Ramya Rajasekar ◽  
Kalaiselvi Manokaran ◽  
Narmadha Rajasekaran ◽  
Gomathi Duraisamy ◽  
Devaki Kanakasabapathi

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mohamed Akram Melakhessou ◽  
Salah Eddine Marref ◽  
Naima Benkiki ◽  
Cherine Marref ◽  
Imene Becheker ◽  
...  

Abstract Background Diabetes mellitus is a serious complex multifactorial disorder that imposes huge health and economic burden on societies. Because the currently available medications have many drawbacks, it's important to look for alternative therapies. Medicinal plants utilized in folk medicine are ideal candidates. Therefore, this work assessed the antidiabetic action of n-butanol extract from the whole plant Atractylis flava Desf (BEAF). These ethnomedicinal properties of BEAF were scientifically validated using in vitro and in vivo assays. In vitro antidiabetic effect of the BEAF was conducted using α-Glucosidase and α-Amylase assays. While the antihyperglycemic activity was assessed using two rat models: Alloxan-induced diabetic rats and oral glucose challenged rats. Experimental diabetes was induced by a single intraperitoneal injection of alloxan at a dose of 150 mg/kg and animals with fasting blood glucose levels (BGL) > 200 mg/dL were considered diabetic. Glibenclamide (5 mg/kg) was used as a typical drug. Results The BEAF at all tested dose levels (100, 250, and 500 mg/kg) showed a significant decrease in blood glucose level in all the two animal models. Besides, the plant extract exhibited a potent inhibitory effect on α-Amylase and α-Glucosidase activity at a concentration of 1000 µg/mL with 76.17% and 89.37%, respectively. Conclusion BEAF exerts in vitro and in vivo antidiabetic effects, these results suggest that the plant extract can be a therapeutic resource in the treatment of diabetes and hyperlipidemia.


Sign in / Sign up

Export Citation Format

Share Document