scholarly journals In vitro, acute and subchronic evaluation of the antidiabetic activity of Atractylis flava Desf n-butanol extract in alloxan-diabetic rats

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mohamed Akram Melakhessou ◽  
Salah Eddine Marref ◽  
Naima Benkiki ◽  
Cherine Marref ◽  
Imene Becheker ◽  
...  

Abstract Background Diabetes mellitus is a serious complex multifactorial disorder that imposes huge health and economic burden on societies. Because the currently available medications have many drawbacks, it's important to look for alternative therapies. Medicinal plants utilized in folk medicine are ideal candidates. Therefore, this work assessed the antidiabetic action of n-butanol extract from the whole plant Atractylis flava Desf (BEAF). These ethnomedicinal properties of BEAF were scientifically validated using in vitro and in vivo assays. In vitro antidiabetic effect of the BEAF was conducted using α-Glucosidase and α-Amylase assays. While the antihyperglycemic activity was assessed using two rat models: Alloxan-induced diabetic rats and oral glucose challenged rats. Experimental diabetes was induced by a single intraperitoneal injection of alloxan at a dose of 150 mg/kg and animals with fasting blood glucose levels (BGL) > 200 mg/dL were considered diabetic. Glibenclamide (5 mg/kg) was used as a typical drug. Results The BEAF at all tested dose levels (100, 250, and 500 mg/kg) showed a significant decrease in blood glucose level in all the two animal models. Besides, the plant extract exhibited a potent inhibitory effect on α-Amylase and α-Glucosidase activity at a concentration of 1000 µg/mL with 76.17% and 89.37%, respectively. Conclusion BEAF exerts in vitro and in vivo antidiabetic effects, these results suggest that the plant extract can be a therapeutic resource in the treatment of diabetes and hyperlipidemia.

2014 ◽  
Vol 92 (5) ◽  
pp. 405-417 ◽  
Author(s):  
Xian-Wei Li ◽  
Yan Liu ◽  
Wei Hao ◽  
Jie-Ren Yang

Sequoyitol decreases blood glucose, improves glucose intolerance, and enhances insulin signaling in ob/ob mice. The aim of this study was to investigate the effects of sequoyitol on diabetic nephropathy in rats with type 2 diabetes mellitus and the mechanism of action. Diabetic rats, induced with a high-fat diet and a low dose of streptozotocin, and were administered sequoyitol (12.5, 25.0, and 50.0 mg·(kg body mass)−1·d−1) for 6 weeks. The levels of fasting blood glucose (FBG), serum insulin, blood urea nitrogen (BUN), and serum creatinine (SCr) were measured. The expression levels of p22phox, p47phox, NF-κB, and TGF-β1 were measured using immunohistochemisty, real-time PCR, and (or) Western blot. The total antioxidative capacity (T-AOC), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were also determined. The results showed that sequoyitol significantly decreased FBG, BUN, and SCr levels, and increased the insulin levels in diabetic rats. The level of T-AOC was significantly increased, while ROS and MDA levels and the expression of p22phox, p47phox, NF-κB, and TGF-β1 were decreased with sequoyitol treatment both in vivo and in vitro. These results suggested that sequoyitol ameliorates the progression of diabetic nephropathy in rats, as induced by a high-fat diet and a low dose of streptozotocin, through its glucose-lowering effects, antioxidant activity, and regulation of TGF-β1 expression.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 520
Author(s):  
Soon Yeon Jeong ◽  
Eunjin Kim ◽  
Ming Zhang ◽  
Yun-Seong Lee ◽  
Byeongjun Ji ◽  
...  

The aim of the current study was to examine the antidiabetic effect of noodle containing fermented lettuce extract (FLE) on diabetic mice as a pre-clinical study. The γ-aminobutyric acid (GABA) content, antioxidant capacity, and total polyphenol content of the FLE noodles were analyzed and compared with those of standard noodles. In addition, oral glucose and sucrose tolerance, and fasting blood glucose tests were performed using a high-fat diet/streptozotocin-mediated diabetic mouse model. Serum metabolite profiling of mice feed standard or FLE noodles was performed using gas chromatography–time-of-flight mass spectrometry (GC–TOF-MS) to understand the mechanism changes induced by the FLE noodles. The GABA content, total polyphenols, and antioxidant activity were high in FLE noodles compared with those in the standard noodles. In vivo experiments also showed that mice fed FLE noodles had lower blood glucose levels and insulin resistance than those fed standard noodles. Moreover, glycolysis, purine metabolism, and amino acid metabolism were altered by FLE as determined by GC–TOF-MS-based metabolomics. These results demonstrate that FLE noodles possess significant antidiabetic activity, suggesting the applicability of fermented lettuce extract as a potential food additive for diabetic food products.


Author(s):  
Somanatha Jena ◽  
Ram C. Jena ◽  
Rasmita Bhol ◽  
Khusbu Agarwal ◽  
Ansuman Sarangi ◽  
...  

<p><strong>Objective: </strong>The present investigation explores the possibilities of using the <em>in vitro</em> and <em>in vivo </em>root and leaf extracts of <em>Withania somnifera </em>for anti-diabetic and anti-hyperlipidaemic effects on streptozotocin-induced diabetic rats.</p><p><strong>Methods: </strong><em>In vitro </em>shoot cultures of <em>Withania somnifera</em> were raised by the axillary proliferation in nodal explants from a garden grown plant using Murashige and Skoog medium then <em>in</em><em> vitro</em> raised roots and shoots were used for the anti-hyperglycemic and anti-hyperlipidaemic experiment. After 72 h of STZ administration, the fasting blood glucose levels were measured and the rats showing FBG level&gt;220 mg/dl were considered to be diabetic and were used for the hyperglycemic study. <em>In vitro</em> and <em>in vivo</em> methanolic root and leaf extracts were orally administered daily to diabetic rats for eight weeks. After the treatment period, blood glucose and serum enzymes like aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total cholesterol, triglycerides, HDL-c high density lipoprotein-bound cholesterol, LDL-c low density lipoprotein-bound cholesterol, LDH, serum protein level, total phenolics and anti-oxidative analysis (DPPH and FRAP) were determined.</p><p><strong>Results: </strong>The levels of blood glucose, AST, ALT, ALP, LDH, HDL-c significantly increased by the use of <em>in vitro</em> methanolic root extracts compared to normal control rats. However, remarkable loss of total protein, albumin, albumin: globulin (A: G) ratio was reported in streptozotocin-induced diabetic rats by using <em>in vitro</em> root extracts. Methanolic <em>in vitro</em> root extract at the dose levels of 300 mg/kg body weight produced a significant decrease in fasting blood glucose (FBG) level by 102.65 with respect to initial fasting blood glucose level after 30 d of the treatment. <em>In vitro</em> root extract demonstrated highest DPPH and FRAP free radical scavenging activity, i.e. 86.55±1.77 and 48.87±2.55 than other extracts.</p><p><strong>Conclusion: </strong>It may be concluded that methanolic <em>in vitro</em> root extract <em>W. somnifera </em>at the dose (300 mg/kg) has more potent anti-hyperglycaemic activity than the other <em>in vitro</em> and <em>in vivo </em>extracts of leaf and root on streptozotocin induced diabetic rats and was also found to be similar in effect to that of the standard drug ‘Glibenclamide’.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Subramaniam Ramachandran ◽  
Aiyalu Rajasekaran ◽  
Natarajan Adhirajan

The present study was aimed to investigate in vivo, in vitro antidiabetic activity of aqueous extract of Terminalia paniculata bark (AETPB) and characterize its possible phytoconstituents responsible for the actions. Type 2 diabetes was induced in rats by streptozotocin-nicotinamide (65 mg/kg–110 mg/kg; i.p.) administration. Oral treatment of AETPB using rat oral needle at 100 and 200 mg/kg doses significantly () decreased blood glucose and glycosylated haemoglobin levels in diabetic rats than diabetic control rats. AETPB-treated diabetic rats body weight, total protein, insulin, and haemoglobin levels were increased significantly () than diabetic control rats. A significant () reduction of total cholesterol and triglycerides and increase in high-density lipoprotein levels were observed in type 2 diabetic rats after AETPB administration. Presence of biomarkers gallic acid, ellagic acid, catechin, and epicatechin in AETPB was confirmed in HPLC analysis. AETPB and gallic acid showed significant () enhancement of glucose uptake action in presence of insulin in muscle cells than vehicle control. Also AETPB inhibited pancreatic α-amylase and α-glucosidase enzymes. In conclusion, the above actions might be responsible for the antidiabetic activity of AETPB due to presence of gallic acid and other biomarkers.


Author(s):  
Ravi Shankar N ◽  
Ram Kishore ◽  
Puranik SB

The purpose of current investigation was to investigate in vivo and in vitro anti-diabetic potentials of aqueous extract of Alphonsea sclerocarpa leaves against alloxan induced diabetes in albino rats. Two in vivo and one in vitro methods were performed for the evaluation of aqueous extract for antidiabetic activity. For in-vivo evaluation, diabetes was induced in albino rats by administering a single dose of alloxan. The study was designed to test the acute effect of aqueous extract of Alphonsea sclerocarpa (AEAS) to reduce blood glucose in OGTT. The chronic study of 21 days was performed against diabetic rats and blood glucose was determined at 1st , 7 th, 14th and 21st day. In chronic in vivo study, serum parameters insulin, urea, creatinine, total cholesterol, triglycerides, ALT and AST were also estimated at 21st day to determine the effects of aqueous and aqueous extracts on complications of diabetes mellitus. Glucose uptake by hemidiaphragm assay was performed to test the ability of extract to utilize glucose. In Oral Glucose Tolerance Test, standard glibenclamide and aqueous extract (200mg/kg and 400mg/kg) treated animals have shown significant reduction in blood glucose at 90 mins but at 120 mins. In chronic model the aqueous extract effectively reduced blood glucose levels (P<0.001) at 14th and 21st day of study in therapeutic groups and effect was comparable to that of standard. The extract could also significantly (P<0.001) reduce concentrations of SGOT, triglycerides, cholesterol and urea in serum and significantly (P<0.001) increased the insulin level in blood which proves beneficial effects of the extract in diabetes. The change in concentrations of SGPT and urea were less significant (P>0.01). The presence of extract in glucose uptake assay could significantly increase utilization of the glucose by rat hemidiaphragm. The aqueous extract of Alphonsea sclerocarpa possess significant antidiabetic properties against alloxan induced diabetic animals.


2021 ◽  
Vol 12 (6) ◽  
pp. 7321-7341

The in vitro antidiabetic and antioxidant potential of Punica granatum, Eriobotrya japonica, and Musa acuminata leaves were evaluated using normal and streptozocin (STZ) induced diabetic rats. Experimental diabetes was induced into Wister rats using streptozocin (40 mg/kg), injected intraperitoneal (IP). Orally crude methanolic leaves extracts were administered in streptozocin induced diabetic rats (n=6) along with the fractions (chloroform, ethyl acetate, and aqueous) of P. granatum, E. japonica, and M. acuminata (50 mg/kg) along with standard drug glimepiride (2 mg/kg) for 28 days. Rats' blood samples were tested for blood glucose using glucose oxidase reactive strips and glucometer. Glucose was administered to nondiabetic control rats. The rats were also treated with glimepiride and leaves extracts of P. granatum, E. japonica, and M. acuminata to check the oral glucose tolerance (OGTT). Blood glucose levels were checked at 0, 30, 60, 120 minutes intervals after drug administration. The effect of various fractions of leaf extracts on the bodyweight of rats was also studied. Data obtained was evaluated by two-way Analysis of Variance (ANOVA) and expressed as standard deviation. Leaves extracts exhibit significant antidiabetic and antioxidant properties. These medicinal plants with antioxidant and antidiabetic properties could be an economical source of local medicine for diabetes.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2759
Author(s):  
Hamza Mechchate ◽  
Imane Es-safi ◽  
Raffaele Conte ◽  
Christophe Hano ◽  
Amal Amaghnouje ◽  
...  

Flaxseed is an oilseed (45–50% oil on a dry-weight basis) crop. Its oil has demonstrated multiple health benefits and industrial applications. The goal of this research was to evaluate the antidiabetic and anti-inflammatory potential of the free polyphenol fraction of flax (Linum usitatissimum L.) seeds (PLU), based on their use in traditional medicine. Mice with alloxan-induced diabetes were used to study the antidiabetic activity of PLU in vivo, with an oral administration of 25 and 50 mg/kg over 28 days. Measurements of body weight and fasting blood glucose (FBG) were carried out weekly, and biochemical parameters were evaluated. An oral glucose tolerance test was also performed. Inhibitory activities of PLU on α-amylase and α-glucosidase activities were evaluated in vitro. The anti-inflammatory was evaluated in vivo in Wistar rats using the paw edema induction Test by carrageenan, and in vitro using the hemolysis ratio test. PLU administration to diabetic mice during the study period improved their body weight and FBG levels remarkably. In vitro inhibitory activity of digestive enzymes indicated that they may be involved in the proposed mode of action of PLU extract. Qualitative results of PLU revealed the presence of 18 polyphenols. These findings support daily consumption of flaxseed for people with diabetes, and suggest that polyphenols in flaxseed may serve as dietary supplements or novel phytomedicines to treat diabetes and its complications.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Reyhane Javanshir ◽  
Moones Honarmand ◽  
Mehran Hosseini ◽  
Mina Hemmati

Abstract Background Nowadays, the green synthesis of AuNPs in the presence of plants has been attracted a lot of attention. Herein, in vivo antidiabetic activity of AuNPs synthesized using Ziziphus jujuba in streptozotocin-induced diabetic rats has been evaluated. Methods Formation of AuNPs was confirmed by UV-vis, HR-TEM and XRD. Different doses of jujube gold nanoparticles (0.5 and 1 mg/kg) were used to treat streptozotocin-induced diabetic rats in different groups. At the end of experiment (21 days), serum level of fasting blood glucose (FBG), insulin, Body weight, HOMA-IR, vitamin D, ALT, AST, urea, creatinine, lipid profile, prooxidant-antioxidant balance (PAB) and liver oxidative stress markers were determined. Results results showed a significant decrease in the level of liver MDA (P = 0.001), fasting blood glucose (P = 0.0001), HOMA-IR (P = 0.0001), ALT (P = 0.0001), AST (P = 0.0001), urea (P = 0.02), Triglycerides (P = 0.002), Total cholesterol (P = 0.0001), PAB (P = 0.0001) and AIP (P = 0.001) and in contrast a significant increase total antioxidant capacity (P = 0.02), insulin (P = 0.03), Body weight (P = 0.0001) and vitamin D (P = 0.0001) in the AuNPs-treated diabetic group compared to the diabetic rats. No significant change was observed in the total thiol group (P = 0.18), LDL-C (P = 0.43), creatinine (P = 0.09) and HDL-C (P = 0.71) level in diabetic rats treated with AuNPs compared to diabetic rats. Conclusion The results of this study proves that green AuNPs exerted promising antidiabetic and anti-oxidant properties.


Author(s):  
KAMNI RAJPUT ◽  
RAMESH CHANDRA DUBEY

Objective: In vitro antioxidant activity, in vivo antidiabetic property and intestinal attachment by two potential probiotic bacterial strains, namely, Enterococcus faecium and Enterococcus hirae were studied using albino rats. Methods: Antioxidant the activity was assessed using 2,2-Diphenyl-1-picrylhydrazyl radicals scavenging assay. Alloxan was administered intraperitoneally to induce diabetic conditions in experimental rats. Animals were treated with oral administration of Enterococcus spp., such as E. faecium, and E. hirae isolated from goat and sheep milk. The control animal group received normal saline for the same days. Glibenclamide drug was used as a positive control against probiotic bacterial cells. Results: However, administration of probiotic bacterial strains E. faecium and E. hirae, in albino rats significantly (p<0.05) at varying doses lowered blood glucose levels in diabetic rats as compared to the diabetic control group. Both the species of Enterococcus increased the bodyweight of experimental rats. However, E. faecium was the best antidiabetic strain having the antioxidant activities also in comparison to E. hirae. The attachment of probiotic bacterial cells E. faecium on the rat’s intestine wall against pathogens was examined. Furthermore, E. faecium showed its aggregation with pathogens by attachment of the intestines of albino rats. This showed that both the bacterial strains exhibited in vivo antidiabetic effect. Conclusion: The results of this study showed that probiotic bacteria possess antioxidant, antidiabetic activities, and attachment of intestine.


2017 ◽  
Vol 54 (3) ◽  
pp. 336
Author(s):  
Kavitha K. ◽  
Ponne S.

The present study was designed to assess the in vitro and in vivo anti-diabetic efficacy of <em>O. sanctum</em> seed and its phytochemical screening. In vitro inhibitory effect on carbohydrate digestive enzymes like α-amylase and α-glucosidase and in vivo parameters such as fasting blood glucose and body weight changes were studied, a potent inhibitory effect was observed on activities of digestive enzymes and a marked decrease in the glucose level in the <em>O. sanctum</em> seed extract treated streptozotocin induced diabetic rats was noted. Further a marked reduction in body weight was also observed.


Sign in / Sign up

Export Citation Format

Share Document