scholarly journals Chronic pulsatile hyperglycemia reduces insulin secretion and increases accumulation of reactive oxygen species in fetal sheep islets

2011 ◽  
Vol 212 (3) ◽  
pp. 327-342 ◽  
Author(s):  
Alice S Green ◽  
Xiaochuan Chen ◽  
Antoni R Macko ◽  
Miranda J Anderson ◽  
Amy C Kelly ◽  
...  

Children from diabetic pregnancies have a greater incidence of type 2 diabetes. Our objective was to determine if exposure to mild–moderate hyperglycemia, by modeling managed diabetic pregnancies, affects fetal β-cell function. In sheep fetuses, β-cell responsiveness was examined after 2 weeks of sustained hyperglycemia with 3 pulses/day, mimicking postprandial excursions, and compared to saline-infused controls (n=10). Two pulsatile hyperglycemia (PHG) treatments were studied: mild (mPHG,n=5) with +15% sustained and +55% pulse; and moderate (PHG,n=10) with +20% sustained and +100% pulse. Fetal glucose-stimulated insulin secretion and glucose-potentiated arginine insulin secretion were lower (P<0.05) in PHG (0.86±0.13 and 2.91±0.39 ng/ml plasma insulin) but not in mPHG fetuses (1.21±0.08 and 4.25±0.56 ng/ml) compared to controls (1.58±0.25 and 4.51±0.56 ng/ml). Islet insulin content was 35% lower in PHG and 35% higher in mPHG vs controls (P<0.01). Insulin secretion and maximally stimulated insulin release were also reduced (P<0.05) in PHG islets due to lower islet insulin content. Isolated PHG islets also had 63% greater (P<0.01) reactive oxygen species (ROS) accumulation at 11.1 mmol/l glucose than controls (P<0.01), but oxidative damage was not detected in islet proteins. PHG fetuses showed evidence of oxidative damage to skeletal muscle proteins (P<0.05) but not insulin resistance. Our findings show that PHG induced dysregulation of islet ROS handling and decreased islet insulin content, but these outcomes are independent. The β-cell outcomes were dependent on the severity of hyperglycemia because mPHG fetuses had no distinguishable impairments in ROS handling or insulin secretion but greater insulin content.

Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3040-3048 ◽  
Author(s):  
Jingbo Pi ◽  
Yushi Bai ◽  
Kiefer W. Daniel ◽  
Dianxin Liu ◽  
Otis Lyght ◽  
...  

Uncoupling protein (UCP) 2 is a widely expressed mitochondrial protein whose precise function is still unclear but has been linked to mitochondria-derived reactive oxygen species production. Thus, the chronic absence of UCP2 has the potential to promote persistent reactive oxygen species accumulation and an oxidative stress response. Here, we show that Ucp2−/− mice on three highly congenic (N &gt;10) strain backgrounds (C57BL/6J, A/J, 129/SvImJ), including two independently generated sources of Ucp2-null animals, all exhibit increased oxidative stress. Ucp2-null animals exhibit a decreased ratio of reduced glutathione to its oxidized form in blood and tissues that normally express UCP2, including pancreatic islets. Islets from Ucp2−/− mice exhibit elevated levels of numerous antioxidant enzymes, increased nitrotyrosine and F4/80 staining, but no change in insulin content. Contrary to results in Ucp2−/− mice of mixed 129/B6 strain background, glucose-stimulated insulin secretion in Ucp2−/− islets of each congenic strain was significantly decreased. These data show that the chronic absence of UCP2 causes oxidative stress, including in islets, and is accompanied by impaired glucose-stimulated insulin secretion.


Author(s):  
Hayat Aljaibeji ◽  
Noha Mousaad Elemam ◽  
Abdul Khader Mohammed ◽  
Hind Hasswan ◽  
Mahammad Al Thahyabat ◽  
...  

Abstract Let7b-5p is a member of the Let-7 miRNA family and one of the top expressed miRNAs in human islets that implicated in glucose homeostasis. The levels of Let7b-5p in type 2 diabetes (T2DM) patients or its role in β-cell function is still unclear. In the current study, we measured the serum levels of let7b-5p in Emirati patients with T2DM (with/without complications) and control subjects. Overexpression or silencing of let7b-5p in INS-1 (832/13) cells was performed to investigate the impact on insulin secretion, content, cell viability, apoptosis, and key functional genes. We found that serum levels of let7b-5p are significantly (p<0.05) higher in T2DM-patients or T2DM with complications compared to control subjects. Overexpression of let7b-5p increased insulin content and decreased glucose-stimulated insulin secretion, whereas silencing of let7b-5p reduced insulin content and secretion. Modulation of the expression levels of let7b-5p did not influence cell viability nor apoptosis. Analysis of mRNA and protein expression of hallmark genes in let7b-5p transfected cells revealed a marked dysregulation of Insulin, Pancreatic And Duodenal Homeobox 1 (PDX1), glucokinase (GCK), glucose transporter 2 (GLUT2), and INSR. In conclusion, an appropriate level of let7b-5p is essential to maintain β-cell function and may be regarded as a biomarker for T2DM.


2021 ◽  
Vol 43 (1) ◽  
pp. 240-250
Author(s):  
Rui Li ◽  
Huichai Huang ◽  
Sean W. Limesand ◽  
Xiaochuan Chen

Chronic adrenergic stimulation is the dominant factor in impairment of the β-cell function. Sustained adrenergic exposure generates dysregulated insulin secretion in fetal sheep. Similar results have been shown in Min6 under the elevated epinephrine condition, but impairments after adrenergic removal are still unknown and a high rate of proliferation in Min6 has been ignored. Therefore, we incubated primary rats’ islets with half maximal inhibitory concentrations of epinephrine for three days, then determined their insulin secretion responsiveness and related signals two days after removal of adrenaline via radioimmunoassay and qPCR. Insulin secretion was not different between the exposure group (1.07 ± 0.04 ng/islet/h) and control (1.23 ± 0.17 ng/islet/h), but total islet insulin content after treatment (5.46 ± 0.87 ng/islet/h) was higher than control (3.17 ± 0.22 ng/islet/h, p < 0.05), and the fractional insulin release was 36% (p < 0.05) lower after the treatment. Meanwhile, the mRNA expression of Gαs, Gαz and Gβ1-2 decreased by 42.8% 19.4% and 24.8%, respectively (p < 0.05). Uncoupling protein 2 (Ucp2), sulphonylurea receptor 1 (Sur1) and superoxide dismutase 2 (Sod2) were significantly reduced (38.5%, 23.8% and 53.8%, p < 0.05). Chronic adrenergic exposure could impair insulin responsiveness in primary pancreatic islets. Decreased G proteins and Sur1 expression affect the regulation of insulin secretion. In conclusion, the sustained under-expression of Ucp2 and Sod2 may further change the function of β-cell, which helps to understand the long-term adrenergic adaptation of pancreatic β-cell.


2009 ◽  
Vol 203 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Simon C Lee ◽  
Christine A Robson-Doucette ◽  
Michael B Wheeler

Currently, the physiological function of uncoupling protein-2 (UCP2) in pancreatic islets and its role in the development of diabetes is a matter of great debate. To further investigate the impact of UCP2 on diabetes development, we used streptozotocin (STZ) to experimentally generate diabetes in both wild-type (WT) and UCP2-knockout (UCP2KO) mice. While multiple low-dose STZ injections led to hyperglycemia development over a 14-day period in both WT and UCP2KO mice, we found the development of hyperglycemia to be significantly less severe in the UCP2KO mice. Measurement of insulin and glucagon secretion (in vitro), as well as their plasma concentrations (in vivo), indicated that UCP2-deficiency showed enhanced insulin secretion but impaired α-cell function. Glucagon secretion was attenuated, despite reduced insulin secretion after exposure to STZ, which together contributed to less severe hyperglycemia development in UCP2KO mice. Further experimentation revealed that UCP2-deficient α- and β-cells had chronically higher cellular reactive oxygen species (ROS) levels than the WT prior to STZ application, which correlated with increased basal β- and α-cell mass. Overall, we suggest that increased chronic ROS signaling as a result of UCP2-deficiency contributes to enhanced β-cell function and impairment of α-cell function, leading to an attenuation of STZ-induced hyperglycemia development.


2012 ◽  
Vol 214 (1) ◽  
pp. 11-20 ◽  
Author(s):  
P Newsholme ◽  
E Rebelato ◽  
F Abdulkader ◽  
M Krause ◽  
A Carpinelli ◽  
...  

Growing evidence indicates that the regulation of intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels is essential for maintaining normal β-cell glucose responsiveness. While long-term exposure to high glucose induces oxidative stress in β cells, conflicting results have been published regarding the impact of ROS on acute glucose exposure and their role in glucose stimulated insulin secretion (GSIS). Although β cells are considered to be particularly vulnerable to oxidative damage, as they express relatively low levels of some peroxide-metabolizing enzymes such as catalase and glutathione (GSH) peroxidase, other less known GSH-based antioxidant systems are expressed in β cells at higher levels. Herein, we discuss the key mechanisms of ROS/RNS production and their physiological function in pancreatic β cells. We also hypothesize that specific interactions between RNS and ROS may be the cause of the vulnerability of pancreatic β cells to oxidative damage. In addition, using a hypothetical metabolic model based on the data available in the literature, we emphasize the importance of amino acid availability for GSH synthesis and for the maintenance of β-cell function and viability during periods of metabolic disturbance before the clinical onset of diabetes.


2020 ◽  
Vol 21 (5) ◽  
pp. 477-498
Author(s):  
Yongfeng Chen ◽  
Xingjing Luo ◽  
Zhenyou Zou ◽  
Yong Liang

Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients’ life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.


Sign in / Sign up

Export Citation Format

Share Document