scholarly journals SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD

2020 ◽  
Vol 245 (3) ◽  
pp. 425-437 ◽  
Author(s):  
Mingjuan Deng ◽  
Fang Qu ◽  
Long Chen ◽  
Chang Liu ◽  
Ming Zhang ◽  
...  

This study aimed to assess the effects of three major SCFAs (acetate, propionate, and butyrate) on NASH phenotype in mice. C57BL/6 mice were fed a methionine- and choline-deficient (MCD) diet and treated with sodium acetate, sodium propionate, or sodium butyrate during the 6-week feeding period. SCFA treatment significantly reduced serum levels of alanine aminotransferase and aspartate transaminase, the numbers of lipid droplets, and the levels of triglycerides and cholesterols in livers of the mice compared with control treatment. SCFAs also reduced MCD-induced hepatic aggregation of macrophages and proinflammatory responses. Among the three SCFAs, sodium acetate (NaA) revealed the best efficacy at alleviating MCD-induced hepatic steatosis and inflammation. Additionally, NaA increased AMP-activated protein kinase activation in the liver and induced the expression of fatty acid oxidation gene in both the liver and cultured hepatocytes. In vitro, NaA decreased MCD-mimicking media-induced proinflammatory responses in macrophages to a greater extent than in hepatocytes. These results indicated that NaA alleviates steatosis in a manner involving AMPK activation. Also, NaA alleviation of hepatic inflammation appears to be due to, in large part, suppression of macrophage proinflammatory activation. SCFAs may represent as a novel and viable approach for alleviating NASH.

Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 5146-5154 ◽  
Author(s):  
Boman G. Irani ◽  
Christelle Le Foll ◽  
Ambrose Dunn-Meynell ◽  
Barry E. Levin

Neurons in the ventromedial and arcuate hypothalamic nuclei (VMN and ARC, respectively) mediate many of leptin’s effects on energy homeostasis. Some are also glucosensing, whereby they use glucose as a signaling molecule to regulate their firing rate. We used fura-2 calcium (Ca2+) imaging to determine the interactions between these two important mediators of peripheral metabolism on individual VMN neurons and the mechanisms by which leptin regulates neuronal activity in vitro. Leptin excited 24%, inhibited 20%, and had a biphasic response in 10% of VMN neurons. Excitation occurred with a EC50 of 5.2 fmol/liter and inhibition with a IC50 of 4.2 fmol/liter. These effects were independent of the ambient glucose levels, and both glucosensing and non-glucosensing neurons were affected by leptin. In contrast, the ARC showed a very different distribution of leptin-responsive neurons, with 40% leptin excited, 10% leptin inhibited, and 2% having a biphasic response (χ2 = 60.2; P < 0.0001). Using pharmacological manipulations we found that leptin inhibits VMN neurons via activation of phosphoinositol-3 kinase and activation of the ATP-sensitive K+ channel. In addition, leptin inhibition was antagonized by 5′-AMP-activated protein kinase activation in 39% of neurons but was unaffected by 5′-AMP-activated protein kinase inhibition. No mechanism was delineated for leptin-induced excitation. Thus, within the physiological range of brain glucose levels, leptin has a differential effect on VMN vs. ARC neurons, and acts on both glucosensing and non-glucosensing VMN neurons in a glucose-independent fashion with inhibition primarily dependent upon activation of the ATP-sensitive K+ channel.


FEBS Letters ◽  
2001 ◽  
Vol 505 (3) ◽  
pp. 348-352 ◽  
Author(s):  
Christophe Beauloye ◽  
Anne-Sophie Marsin ◽  
Luc Bertrand ◽  
Ulrike Krause ◽  
D.Grahame Hardie ◽  
...  

Diabetes ◽  
2006 ◽  
Vol 55 (10) ◽  
pp. 2688-2697 ◽  
Author(s):  
A. L. Carey ◽  
G. R. Steinberg ◽  
S. L. Macaulay ◽  
W. G. Thomas ◽  
A. G. Holmes ◽  
...  

Circulation ◽  
2016 ◽  
Vol 134 (5) ◽  
pp. 405-421 ◽  
Author(s):  
Hong Liu ◽  
Yujin Zhang ◽  
Hongyu Wu ◽  
Angelo D’Alessandro ◽  
Gennady G. Yegutkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document