scholarly journals The position of the germinal vesicle and the chromatin organization together provide a marker of the developmental competence of mouse antral oocytes

Reproduction ◽  
2009 ◽  
Vol 138 (4) ◽  
pp. 639-643 ◽  
Author(s):  
Michele Bellone ◽  
Maurizio Zuccotti ◽  
Carlo Alberto Redi ◽  
Silvia Garagna

Based on their chromatin organization, antral oocytes can be classified into two classes, namely surrounded nucleolus (SN, chromatin forms a ring around the nucleolus), and not surrounded nucleolus (NSN, chromatin has a diffuse pattern). Oocytes of both classes are capable of meiotic resumption, but while SN oocytes, following fertilization, develop to term, NSN oocytes never develop beyond the two-cell stage. A recent study has shown that the position of the germinal vesicle (GV) can be used as a morphological marker predictive of oocyte meiotic competence, i.e. oocytes with a central GV have a higher meiotic competence than oocytes with an eccentric GV. In the present study, we have associated both markers with the aim of identifying, with more accuracy, the oocytes' developmental competence. Following their isolation, antral oocytes were classified on the basis of both SN and NSN chromatin configuration and their GV position, matured to metaphase II and fertilized in vitro. We demonstrated that the position of the GV is a good marker to predict the oocytes' developmental competence, but only when associated with the observation of the chromatin organization.

2019 ◽  
Vol 31 (12) ◽  
pp. 1793 ◽  
Author(s):  
Valentina Lodde ◽  
Silvia Colleoni ◽  
Irene Tessaro ◽  
Davide Corbani ◽  
Giovanna Lazzari ◽  
...  

Several studies report that a two-step culture where mammalian oocytes are first kept under meiosis-arresting conditions (prematuration) followed by IVM is beneficial to embryo development. The most promising results were obtained by stratifying the oocyte population using morphological criteria and allocating them to different culture conditions to best meet their metabolic needs. In this study, horse oocytes were characterised to identify subpopulations that may benefit from prematuration. We investigated gap-junction (GJ) coupling, large-scale chromatin configuration and meiotic competence in compact and expanded cumulus–oocyte complexes (COCs) according to follicle size (<1, 1–2, >2cm) and season. Then we tested the effect of cilostamide-based prematuration in compact COCs collected from follicles <1 and 1–2cm in diameter on embryo development. Meiotic competence was not affected by prematuration, whereas COCs from follicles 1–2cm in diameter yielded embryos with a higher number of cells per blastocyst than oocytes that underwent direct IVM (P<0.01, unpaired Mann–Whitney test), suggesting improved developmental competence. Oocytes collected from follicles <1cm in diameter were not affected by prematuration. This study represents an extensive characterisation of the functional properties of immature horse oocytes and is the first report of the effects of cilostamide-based prematuration in horse oocyte IVM on embryo development.


2015 ◽  
Vol 27 (1) ◽  
pp. 244
Author(s):  
N. A. Martino ◽  
M. E. Dell'Aquila ◽  
M. F. Uranio ◽  
R. Lampignano ◽  
G. M. Lacalandra ◽  
...  

Immature equine oocytes may be held overnight in an Earle's/Hanks' M199-based medium in the absence of meiotic inhibitors (EH medium) to schedule the onset of in vitro maturation. Holding in EH has been shown not to affect meiotic or developmental competence of equine oocytes (Choi et al. 2006 Theriogenology 66, 955–963). However, no studies have been performed to identify the mode by which this medium suppresses meiosis. We hypothesised that holding temperature may affect oocyte meiotic arrest. The effect of 3 holding temperatures (25, 30, 38°C) on chromatin status was investigated after Hoechst 33258 staining (Hinrichs et al. 2005 Biol. Reprod. 72, 1142–1150). Oocytes were recovered by scraping of follicles from slaughterhouse-derived ovaries. Data were analysed by Chi-squared test and one-way ANOVA followed by Dunn's or Holm-Sidak Multiple Comparison methods. A level of P < 0.05 was considered significant. There were no significant differences in chromatin configuration between oocytes held overnight at 25°C (25°C-held) and controls (immediately-fixed oocytes); the proportion of oocytes showing meiotic resumption was 1/27, 4% and 0/26, 0%, respectively (not significant, NS). In contrast, holding at higher temperature significantly increased meiosis resumption (14/38, 37% and 14/28, 50%, at 30 and 38°C, respectively; P < 0.01) and reduced the proportion of oocytes showing the most meiotically-competent germinal-vesicle (GV) configuration (condensed chromatin, CC; 24 to 29% v. 65 to 70% for control and 25°C-held, respectively; P < 0.05). Based on these results, a subsequent experiment was performed in which oocyte meiotic stage and mitochondrial (mt) potential of 25°C-held (n = 29) and control (n = 36) oocytes was evaluated. Nuclear chromatin, mt activity (MitoTracker orange), intracellular reactive oxygen species (ROS) levels (2′,7′-dichlorodihydrofluorescein diacetate, DCDHFDA), and mt/ROS colocalization (Pearson's coefficient) were analysed by epifluoscence and confocal microscopy (Martino et al. 2012 Fertil. Steril. 97, 720–728). Meiotic arrest after EH treatment at 25°C was confirmed (0/29, 0% v. 5/36, 14% for meiotic resumption in 25°C-held and controls, respectively; NS). At any GV stage, 25°C-held treatment had no effect on mt activity, ROS levels, or mt/ROS colocalization. For example, in CC oocytes, values for control and 25°C-held, respectively, were: MitoTracker, 547.8 ± 499.5 v. 722.9 ± 390.3; DCF fluorescence intensity, 278.5 ± 179.3 v. 378 ± 185, and mt/ROS colocalization, 0.5 ± 0.1 v. 0.5 ± 0.2; these were not significantly different (NS). In conclusion, EH holding at 25°C maintains meiotic arrest, viability, and mt potential of equine oocytes.


2005 ◽  
Vol 17 (2) ◽  
pp. 3 ◽  
Author(s):  
Poul Maddox-Hyttel ◽  
Bolette Bjerregaard ◽  
Jozef Laurincik

The nucleolus is the site of rRNA and ribosome production. This organelle presents an active fibrillogranular ultrastructure in the oocyte during the growth of the gamete but, at the end of the growth phase, the nucleolus is transformed into an inactive remnant that is dissolved when meiosis is resumed at germinal vesicle breakdown. Upon meiosis, structures resembling the nucleolar remnant, now referred to as nucleolus precursor bodies (NPBs), are established in the pronuclei. These entities harbour the development of fibrillogranular nucleoli and re-establishment of nucleolar function in conjunction with the major activation of the embryonic genome. This so-called nucleologenesis occurs at a species-specific time of development and can be classified into two different models: one where nucleolus development occurs inside the NPBs (e.g. cattle) and one where the nucleolus is formed on the surface of the NPBs (e.g. pigs). A panel of nucleolar proteins with functions during rDNA transcription (topoisomerase I, RNA polymerase I and upstream binding factor) and early (fibrillarin) or late rRNA processing (nucleolin and nucleophosmin) are localised to specific compartments of the oocyte nucleolus and those engaged in late processing are, to some degree, re-used for nucleologenesis in the embryo, whereas the others require de novo embryonic transcription in order to be allocated to the developing nucleolus. In the oocyte, inactivation of the nucleolus coincides with the acquisition of full meiotic competence, a parameter that may be of importance in relation to in vitro oocyte maturation. In embryo, nucleologenesis may be affected by technological manipulations: in vitro embryo production apparently has no impact on this process in cattle, whereas in the pig this technology results in impaired nucleologenesis. In cattle, reconstruction of embryos by nuclear transfer results in profound disturbances in nucleologenesis. In conclusion, the nucleolus is an organelle of great importance for the developmental competence of oocytes and embryos and may serve as a morphological marker for the completion of oocyte growth and normality of activation of the embryonic genome.


2005 ◽  
Vol 17 (2) ◽  
pp. 294
Author(s):  
V. Lodde ◽  
C. Galbusera ◽  
S. Modina ◽  
M.S. Beretta ◽  
A. Lauria ◽  
...  

Chromatin configuration in the germinal vesicle (GV) undergoes dynamic changes during oocyte growth, and the progressive chromatin condensation has been related to the acquisition of embryonic developmental potential. However, little is known about the mechanisms that regulate chromatin remodeling. In immature mouse oocytes, chromatin condensation and redistribution around the nucleolus are associated with transcriptional repression in both in vivo-derived and in vitro-cultured oocytes in the presence of an intact cumulus oophorus (de la Fuente et al. 2001 Dev. Biol. 229, 224). It is widely accepted that oocyte communication with the somatic cell compartment is essential for both oocyte growth and acquisition of meiotic competence (Eppig et al. 1997 Hum. Reprod. 12, 127). In particular, cumulus cells play an active role in modulating the levels of transcription in the nucleoplasm and in perinuclear domains as well as in chromatin configuration of GV stage oocytes. In cattle, a heterogeneous population of cumulus-oocyte complexes (COCs) has been found after isolation from the follicle, and this is characterized by a different functional degree of gap junction-mediated communication (Luciano et al. 2004 Biol. Reprod. 70, 465). This study was aimed at investigating the possible correlation between the chromatin configuration of immature bovine oocytes and the status of communication between the oocyte and cumulus cells, and oocyte developmental competence. In the first experiment, 138 COCs, isolated from follicles 2–6 mm in diameter, were injected with a 3% solution of Lucifer Yellow to assess the communication status between oocytes and cumulus cells. Successively, COCs were freed of cells, and denuded oocytes (DOs) were stained with Hoechst 33342 to determine the chromatin configuration. In a second experiment, 330 COCs were denuded and stained with Hoechst 33342 in order to assess chromatin configuration and then matured in vitro according to their GV stage. After IVM, DOs were fertilized, and presumptive zygotes were cultured for 7 days at which time blastocyst rate was assessed. Data were analyzed by ANOVA and Fisher's PLSD test. Three stages of GV oocytes were identified: GVI, with filamentous chromatin distributed in the nucleoplasm; GVII, with chromatin condensed into thick clumps; and GVIII, with chromatin condensed into a single clump. The GVIII stage showed a lower proportion of functional open communication than the GVI and GVII groups (8.5 vs. 45.7 and 46.1, respectively, P < 0.05). However, when compared with each other, the GVI stage oocytes showed lower embryonic developmental competence (12.9 in GVI vs. 22.1 and 24.2 in GVII and GVIII, respectively, P < 0.05). Our findings indicate that the status of communication between oocytes and cumulus cells could be related to the chromatin organization in immature bovine oocytes. A direct correlation between the communications grade, the modulation of oocyte transcriptional activity, and the acquisition of oocyte developmental competence remain to be confirmed. This work was supported by a 2003 UniMi Grant.


Zygote ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Boon Chin Alexis Heng ◽  
Ng Soon Chye

This study attempted to develop a ‘less meiotically competent’ murine model for oocyte in vitro maturation (IVM), which could more readily be extrapolated to human clinical assisted reproduction. Oocyte meiotic competence was drastically reduced upon shortening the standard duration of in vivo gonadotrophin stimulation from 48 h to 24 h, and by selecting only naked or partially naked germinal vesicle oocytes, instead of fully cumulus enclosed oocyte complexes. With such a less meiotically competent model, only porcine granulosa coculture significantly enhanced the oocyte maturation rate in vitro, whereas no significant enhancement was observed with macaque and murine granulosa coculture. Increased serum concentrations and the supplementation of gonadotrophins, follicular fluid and extracellular matrix gel within the culture medium did not enhance IVM under either cell-free or coculture conditions. Culture medium conditioned by porcine granulosa also enhanced the maturation rate, and this beneficial effect was not diminished upon freeze–thawing. Enhanced IVM in the presence of porcine granulosa coculture did not, however, translate into improved developmental competence, as assessed by in vitro fertilization and embryo culture to the blastocyst stage.


2005 ◽  
Vol 17 (2) ◽  
pp. 216
Author(s):  
Y.H. Choi ◽  
L.B. Love ◽  
D.D. Varner ◽  
K. Hinrichs

At the time of recovery, immature equine oocytes may be separated into those with either expanded cumuli (Ex) or compact cumuli (Cp). The Cp oocytes originate from viable follicles but are largely juvenile, with low meiotic competence (20 to 30% maturation to MII), and possibly reduced developmental competence. We previously found that in Cp oocytes recovered immediately after slaughter, suppression of meiosis with roscovitine for 24 h before maturation increased embryo development at 4 days after intracytoplasmic sperm injection (ICSI; Franz et al. 2003 Reproduction 125, 693–700). The present study was conducted to evaluate the effect of roscovitine suppression on nuclear maturation and blastocyst formation of Cp oocytes recovered after transport of ovaries from the abattoir (i.e. recovered 5–9 h after slaughter). Compact oocytes recovered from transported ovaries were cultured in M199 with 10% FBS containing 66 μM roscovitine with or without an oil cover. After 16–18 or 24 h, oocytes were fixed to examine the chromatin configuration. Treatment for 16–18 h without oil resulted in the lowest rate of meiotic resumption (0%); thus this treatment was utilized in further studies. Resumption in other treatments ranged from 3 to 6%. Following roscovitine suppression, oocytes were cultured for 30 h in M199 with 10% FBS and 5 μU mL−1 FSH for maturation; control oocytes were cultured for 30 h in the same medium immediately after recovery. Mature oocytes were subjected to ICSI, then cultured in DMEM/F-12 with 10% FBS with or without co-culture with equine oviductal epithelial cells under mineral oil in 5% CO2 in air at 38.2°C, and then evaluated at 7.5 days. Progression to MII (82/376, 22%) after maturation of roscovitine-treated oocytes was similar to that for control oocytes (74/395, 19%). There was no significant difference in cleavage rates after ICSI (72–78%) among treatments. Development to blastocyst was highest in roscovitine-treated oocytes in DMEM/F-12 with co-culture (11/30, 37%); this was significantly higher than that of non-treated oocytes in DMEM/F-12 alone (5/36, 14%), but similar to that of non-treated/DMEM/F-12/co-culture (10/37, 27%) and roscovitine/DMEM/F-12 alone (8/39, 21%). These data indicate that roscovitine induces a fully reversible meiotic suppression in Cp equine oocytes recovered 5–9 h after slaughter, and that this suppression does not harm subsequent developmental competence. This treatment may be used to manipulate the time of onset of maturation of equine oocytes for ease of subsequent procedures. Co-culture with oviductal epithelial cells tended to increase blastocyst rate (P = 0.1, Fisher's exact test) in contrast to our previous findings with embryos from Ex oocytes (Choi et al. 2004 Biol. Reprod. 70, 1231–1238). Further work is needed to determine whether this is related to differences in intrinsic developmental competence between oocyte types. This work was supported by the Link Equine Research Endowment Fund (Texas A&M University).


2005 ◽  
Vol 17 (2) ◽  
pp. 271
Author(s):  
L. Campos-Chillon ◽  
T. Suh ◽  
E. Carnevale ◽  
G. Seidel

Maintaining immature bovine oocytes at the germinal vesicle stage by inhibiting M-phase promoting factor (MPF) activity is a reversible process when using roscovitine, and this can improve cytoplasmic maturation in vitro. However, optimum meiotic arrest times and subsequent IVM times have not been determined, so we evaluated the developmental competence of oocytes in relation to these times. Two by two factorial treatments consisting of 2 arrest times (8 h, 16 h) and 2 subsequent IVM times (16 h, 22 h) plus a control were replicated 6 times in this study. Semen from two bulls was used three times. Chemically defined media (CDM) were used throughout (Olson and Seidel 2000 J. Anim. Sci. 78, 152–157). Slaughterhouse-derived oocytes were arrested in meiosis in 1 mL of CDM-M without any hormones, but containing 50 μM roscovitine and 0.5% fatty acid-free (FAF)-BSA under 5% CO2 in air at 38.5°C. After 8 or 16 h of meiotic arrest, oocytes were washed and matured in 1 mL of CDM-M containing 0.5% FAF-BSA, 2 mM glucose, 50 ng/mL EGF, 15 ng/mL NIDDK-oFSH-20, 1 μg/mL USDA-LH-B-5, 1 μg/mL E2, and 0.1 mM cysteamine for 16 or 22 h under 5% CO2 in air at 38.5°C. Oocytes for the control group were matured in 1 mL of the CDM-M with hormones for 22 h. Ten oocytes from each group were fixed after IVM, stained with orcein, and evaluated for maturation to MII. For fertilization, motile sperm recovered from frozen-thawed semen were co-incubated for 18–20 h with ∼20 oocytes/group at a final sperm concentration of 0.5 × 106 sperm/mL in F-CDM. Presumptive zygotes were cultured in 0.5 mL of CDM-1 for 2.5 days and then in CDM-2 for 5.5 days in 5% CO2, 5% O2, 90% N2 in a humidified incubator at 39°C. Cleavage rates were evaluated after culture in CDM-1. Blastocyst rate, blastocyst stage (5 = early, 6 = full, 6.5 = expanding, 7 = expanded, 7.5 = hatching, 8 = hatched), and embryo quality (1 = excellent, 2 = good, 3 = fair, 4 = poor) were evaluated after CDM-2. Data were subjected to ANOVA; the arc sin transformation was used for percentage data, and least-squares means are presented. There were no significant differences in % cleavage (Cle), cell stage, or blastocyst quality among treatments (P > 0.1). However, meiotic arrest of oocytes for 16 h and subsequent IVM for 16 h improved embryo development to blastocysts compared to other roscovitine treatments (Table 1, P < 0.05). A bull effect for % blastocysts was observed, 19.9% and 25.2% for bulls 1 and 2, respectively (P < 0.08). Blastocyst production was improved by shortening oocyte maturation time from 22 to 16 h, when meiotic progression was previously inhibited for 16 h with roscovitine. Table 1. Effect of meiotic arrest and IVM times on oocyte maturation and embryo development


Zygote ◽  
2005 ◽  
Vol 13 (4) ◽  
pp. 303-308 ◽  
Author(s):  
H. Iwata ◽  
T. Hayashi ◽  
H. Sato ◽  
K. Kimura ◽  
T. Kuwayama ◽  
...  

During ovary storage oocytes lose some of their developmental competence. In the present study, we maintained storage solutions of phosphate-buffered saline (PBS) at various temperatures (20 or 35 °C) or supplemented them with magnesium (Mg), raffinose and sucrose. Subsequently, we examined the kinetics of electrolytes in the follicular fluid (FF) during the ovary storage period (9h), the survival rate of granulosa cells in the follicles, and the developmental competence of oocytes after the storage. Lowering the temperature from 35 to 20 °C increased the total cell number of blastocysts that developed at 7 days after in vitro maturation and in vitro fertilization of oocytes. In stock solution with supplements of 15 mM Mg or a combination of 5 mM Mg and 10 mM raffinose or sucrose, a significantly higher number of oocytes developed into blastocysts with a large number of cells in each blastocyst, and a significantly higher number of living granulosa cells were obtained as compared with stock solutions without any supplements. During ovary storage, the concentrations of potassium and chloride in the FF were increased, and the addition of Mg to the stock solution increased the concentration of Mg in the FF. Germinal vesicle breakdown in oocytes that were collected from ovaries stored in the solution supplemented with 15 mM Mg or a combination of 5 mM Mg and 10 mM of raffinose occurred at a slower rate than that in oocytes collected from ovaries stored in PBS alone. On the other hand, the oocytes collected from ovaries stored in the solution supplemented with 15 mM Mg or a combination of 5 mM Mg and 10 mM raffinose reached the metaphase II (MII) stage more rapidly than the oocytes collected from ovaries stored in the PBS alone. In conclusion, the modification of stock solution by the addition of Mg and raffinose improved the developmental competence of oocytes obtained from ovaries preserved for a long period.


Zygote ◽  
2009 ◽  
Vol 17 (3) ◽  
pp. 187-193 ◽  
Author(s):  
So Gun Hong ◽  
Goo Jang ◽  
Hyun Ju Oh ◽  
Ok Jae Koo ◽  
Jung Eun Park ◽  
...  

SummaryBrain-derived neurotrophic factor (BDNF) signalling via tyrosine kinase B receptors may play an important role in ovarian development and function. It has been reported that metformin elevates the activity of Tyrosine kinase receptors and may amplify BDNF signalling. The objective of this study was to investigate the effect of BDNF during in vitro maturation (IVM) and/or in vitro culture (IVC) (Experiment 1), and to evaluate the collaborative effect of BDNF and metformin treatment on the developmental competence of bovine in vitro fertilized (IVF) embryos (Experiment 2). In Experiment 1, BDNF, which was added to our previously established IVM systems, significantly increased the proportions of MII oocytes at both 10 ng/ml (86.7%) and 100 ng/ml (85.4%) compared with the control (64.0%). However, there was no statistically significant difference in blastocyst development between the control or BDNF-supplemented groups. In Experiment 2, in order to investigate the effect of BDNF (10 ng/ml) and/or metformin (10−5 M) per se, TCM-199 without serum and hormones was used as the control IVM medium. The BDNF (48.3%) and BDNF plus metformin (56.5%) significantly enhanced the proportions of MII oocytes compared with the control (34.4%). Although, BDNF or metformin alone had no effect in embryo development, BDNF plus metformin significantly improved early embryo development to the 8–16-cell stage compared with the control (16.5 vs. 5.5%). In conclusion, the combination of BDNF and metformin may have a collaborative effect during the IVM period. These results could further contribute to the establishment of a more efficient bovine in vitro embryo production system.


Zygote ◽  
2002 ◽  
Vol 10 (1) ◽  
pp. 73-78 ◽  
Author(s):  
Maurizio Zuccotti ◽  
Rubén H. Ponce ◽  
Michele Boiani ◽  
Stefano Guizzardi ◽  
Paolo Govoni ◽  
...  

Mouse antral oocytes can be classified in two different types termed SN or NSN oocytes, depending on the presence or absence, respectively, of a ring of Hoechst 33342-positive chromatin surrounding the nucleolus. The aim of the present study was to test the developmental competence to blastocyst of the two types of oocytes. Here we show that following isolation, classification and culture of cumulus-free antral oocytes, 14.7% and 74.5% of NSN and SN oocytes, respectively, reached the metaphase II stage. When fertilised and further cultured none of the metaphase II NSN oocytes developed beyond the 2-cell stage whilst 47.4% of the metaphase II SN oocytes reached the 4-cell stage and 18.4% developed to blastocyst. The findings reported in this paper may contribute to improved procedures of female gamete selection for in vitro fertilisation of humans and farm animals. Furthermore, the selection of oocytes with better developmental potential may be of interest for studies on nuclear/cytoplasm interaction, particularly in nuclear-transfer experiments.


Sign in / Sign up

Export Citation Format

Share Document