scholarly journals Hyperactivation of dormant primordial follicles in ovarian endometrioma patients

Reproduction ◽  
2020 ◽  
Vol 160 (6) ◽  
pp. R145-R153
Author(s):  
Sachiko Matsuzaki ◽  
Michael W Pankhurst

Serum anti-Müllerian hormone (AMH) levels decrease after surgical treatment of ovarian endometrioma. This is the main reason that surgery for ovarian endometrioma endometriosis is not recommended before in vitro fertilization, unless the patient has severe pain or suspected malignant cysts. Furthermore, it has been suggested that ovarian endometrioma itself damages ovarian reserve. This raises two important challenges: (1) determining how to prevent surgical damage to the ovarian reserve in women with ovarian endometrioma and severe pain requiring surgical treatment and (2) deciding the best treatment for women with ovarian endometrioma without pain, who do not wish to conceive immediately. The mechanisms underlying the decline in ovarian reserve are potentially induced by both ovarian endometrioma and surgical injury but the relative contribution of each process has not been determined. Data obtained from various animal models and human studies suggest that hyperactivation of dormant primordial follicles caused by the local microenvironment of ovarian endometrioma (mechanical and/or chemical cues) is the main factor responsible for the decreased primordial follicle numbers in women with ovarian endometrioma. However, surgical injury also induces hyperactivation of dormant primordial follicles, which may further reduce ovarian reserve after removal of the endometriosis. Although further studies are required to elucidate the mechanisms underlying diminished ovarian reserve in women with ovarian endometrioma, the available data strongly suggests the need to prevent/minimize hyperactivation of dormant primordial follicles, regardless of whether surgery is performed, for better clinical management of ovarian endometrioma.

2021 ◽  
Vol 22 (12) ◽  
pp. 6570
Author(s):  
Yue Lv ◽  
Rui-Can Cao ◽  
Hong-Bin Liu ◽  
Xian-Wei Su ◽  
Gang Lu ◽  
...  

A better understanding of the mechanism of primordial follicle activation will help us better understand the causes of premature ovarian insufficiency (POI), and will help us identify new drugs that can be applied to the clinical treatment of infertility. In this study, single oocytes were isolated from primordial and primary follicles, and were used for gene profiling with TaqMan array cards. Bioinformatics analysis was performed on the gene expression data, and Ingenuity Pathway Analysis was used to analyze and predict drugs that affect follicle activation. An ovarian in vitro culture system was used to verify the function of the drug candidates, and we found that curcumin maintains the ovarian reserve. Long-term treatment with 100 mg/kg curcumin improved the ovarian reserve indicators of AMH, FSH, and estradiol in aging mice. Mechanistic studies show that curcumin can affect the translocation of FOXO3, thereby inhibiting the PTEN-AKT-FOXO3a pathway and protecting primordial follicles from overactivation. These results suggest that curcumin is a potential drug for the treatment of POI patients and for fertility preservation.


2021 ◽  
Author(s):  
Jessica M. Toothaker ◽  
Kristen Roosa ◽  
Alexandra Voss ◽  
Suzanne M. Getman ◽  
Melissa Pepling

Abstract BackgroundAssembly of oocytes into primordial follicles is essential for establishing the ovarian reserve required for female fertility. In mice, this process begins during embryonic development. Primordial germ cells form cysts by incomplete mitosis until 13.5 days post coitum (dpc). These cysts break down just before birth. Some oocytes undergo apoptosis while surviving oocytes are enclosed by granulosa cells to form primordial follicles. Cyst breakdown and primordial follicle formation were previously shown to be inhibited by estradiol and estrogenic compounds in vitro, suggesting that estrogen is important for regulation of this process. MethodsTo determine the role of fetal estrogen in cyst breakdown and follicle formation these processes were quantified in aromatase deficient (ArKO) mice between 17.5 dpc and postnatal day (PND) 9. Ovaries of ArKO mice were also examined at 2-week intervals to determine if folliculogenesis is affected by lack of estrogen and the age at which the typical ArKO ovarian phenotype first appears. ResultsOocyte number, follicle assembly and follicle development in ArKO mice did not differ from controls between 17.5 dpc and PND9 except for a difference in the proportion of follicles at the primordial and primary stage at PND7. At 2 weeks, ArKO heterozygous and homozygous ovaries still had oocytes in cyst while all oocytes were enclosed in follicles in wildtype ovaries. From 2 to 8 weeks oocyte numbers were similar in all genotypes though there was a trend toward fewer total oocytes in ArKO homozygous females as compared to controls at 8 weeks and a significant reduction at 10 weeks. Abnormal structures such as hemorrhagic follicles and hemosiderin deposits were also observed starting at 6 weeks. ConclusionsThese results suggest that a lack of fetal estrogen does not affect the rate of cyst breakdown or primordial follicle formation perinatally, and maternal estrogen or other signals are the chief regulators. Furthermore, the typical ArKO ovarian phenotype occurs earlier than previously reported.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
C De Roo ◽  
S Lierman ◽  
K Tilleman ◽  
P De Sutter

Abstract STUDY QUESTION What is the role of the Hippo and PI3K/Akt pathway in follicles during ovarian tissue culture in tissue derived from oncological patients and transgender men? SUMMARY ANSWER Results highlight a Hippo pathway driven primordial follicle activation in vitro, predominantly from Day 0 to Day 4. WHAT IS KNOWN ALREADY In-vitro ovarian tissue culture aims at activating and maturing primordial follicles for fertility restoration in patients with a threatened ovarian reserve. Not all patients are eligible for ovarian cortex transplantation and therefore several groups are attempting to culture ovarian tissue in-vitro. Cortex fragmentation disrupts the Hippo pathway, leading to increased expression of downstream growth factors and follicle growth. The PI3K/Akt pathway is considered the intracellular pathway to where different extracellular factors involved in primordial follicle activation in-vivo converge. In order to optimise current ovarian tissue culture models, information on progression of these pathways during tissue culture is mandatory. STUDY DESIGN, SIZE, DURATION The first step of a multistep cortex culture system was performed using 144 ovarian cortex pieces from a total of six patients. Per patient, 24 cortical strips were cultured for 6 days and six pieces per patient were collected for downstream analysis of follicle development and Hippo and PI3K/Akt pathway targets every second day. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian tissue was obtained from oncological (N = 3; 28.67 ± 4.51 years) and transgender (N = 3; 23.33 ± 1.53 years) patients. Follicles were analysed using haematoxylin-eosin staining and pathways were studied using immunohistochemistry and precise follicle excision by laser capture micro-dissection for RT-qPCR analysis. MIQE guidelines for RT-qPCR were pursued. Reference gene selection (GAPDH, RPL3A, 18s rRNA) was performed using GeNorm Reference Gene Selection Kit. Statistical analysis was conducted with IBM SPSS Statistics 23 (Poisson regression, negative binomial regression, ANOVA and paired t-test). MAIN RESULTS AND THE ROLE OF CHANCE Immunohistochemical analysis confirmed a Hippo pathway driven primordial follicle activation due to mechanical manipulation of the cortical strips. Ovarian tissue preparation and culture induced the inhibitory phosphorylated Yes-associated protein (pYAP) to disappear in granulosa cells of primordial follicles on Day 2. The stimulatory YAP on the contrary appeared in primordial granulosa cells over increasing culture days. Looking at the YAP target connective tissue growth factor (CTGF), a significantly up-regulated CTGF was noted in primordial follicles when comparing Day 2 and Day 4 (ratio Day 2/4 = 0.082; P < 0.05), clearly showing an effect on the Hippo pathway in primordial follicles during tissue culture. Follicle classification showed a significant drop in estimated primordial follicle counts in the oncological cohort (−78%; P = 0.021) on Day 2 and in the transgender cohort on Day 4 (−634%; P = 0.008). Intermediate follicle counts showed a non-significant increasing trend to during culture and this follicle recruitment and growth resulted in a significant rise in estimated primary follicle counts on Day 6 in oncological patients (170%; P = 0.025) and, although limited in absolute numbers, a significant increase in secondary follicles on Day 4 (367%; P = 0.021) in the transgender cohort. Subsequent antral follicle development could not be observed. LIMITATIONS, REASONS FOR CAUTION A limitation is the small sample size, inherent to this study subject, especially as a large amount of tissue was needed per patient to reduce inter-patient variation in different downstream analysis techniques. A particular and specific weakness of this study is the inability to include an age-matched control group. WIDER IMPLICATIONS OF THE FINDINGS These findings support an adapted tissue preparation for Hippo pathway disruption and a shorter first phase of tissue culture. This work may also have implications for transplantation of cryopreserved tissue as larger strips (and thus slower burnout due to less Hippo pathway disruption) could be a benefit. STUDY FUNDING/COMPETING INTEREST(S) This research was financially supported by the Foundation Against Cancer (Stichting tegen Kanker, TBMT001816N), the Flemish Foundation of Scientific Research (FWO Vlaanderen, FWO G0.065.11N10) and the Gender Identity Research and Education Society (GIRES) foundation. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.


Reproduction ◽  
2018 ◽  
Vol 156 (1) ◽  
pp. F59-F73 ◽  
Author(s):  
Anamaria C Herta ◽  
Francesca Lolicato ◽  
Johan E J Smitz

The currently available assisted reproduction techniques for fertility preservation (i.e.in vitromaturation (IVM) andin vitrofertilization) are insufficient as stand-alone procedures as only few reproductive cells can be conserved with these techniques. Oocytes in primordial follicles are well suited to survive the cryopreservation procedure and of use as valuable starting material for fertilization, on the condition that these could be grown up to fully matured oocytes. Our understanding of the biological mechanisms directing primordial follicle activation has increased over the last years and this knowledge has paved the way toward clinical applications. New multistepin vitrosystems are making use of purified precursor cells and extracellular matrix components and by applying bio-printing technologies, an adequate follicular niche can be built. IVM of human oocytes is clinically applied in patients with polycystic ovary/polycystic ovary syndrome; related knowhow could become useful for fertility preservation and for patients with maturation failure and follicle-stimulating hormone resistance. The expectations from the research on human ovarian tissue and immature oocytes cultures, in combination with the improved vitrification methods, are high as these technologies can offer realistic potential for fertility preservation.


2020 ◽  
Vol 21 (9) ◽  
pp. 3120
Author(s):  
Sook Young Yoon ◽  
Ran Kim ◽  
Hyunmee Jang ◽  
Dong Hyuk Shin ◽  
Jin Il Lee ◽  
...  

Peroxisome proliferator-activated receptor gamma (PPARγ) is known as a regulator of cellular functions, including adipogenesis and immune cell activation. The objectives of this study were to investigate the expression of PPARγ and identify the mechanism of primordial follicle activation via PPARγ modulators in mouse ovaries. We first measured the gene expression of PPARγ and determined its relationship with phosphatase and tensin homolog (PTEN), protein kinase B (AKT1), and forkhead box O3a (FOXO3a) expression in neonatal mouse ovaries. We then incubated neonatal mouse ovaries with PPARγ modulators, including rosiglitazone (a synthetic agonist of PPARγ), GW9662 (a synthetic antagonist of PPARγ), and cyclic phosphatidic acid (cPA, a physiological inhibitor of PPARγ), followed by transplantation into adult ovariectomized mice. After the maturation of the transplanted ovaries, primordial follicle growth activation, follicle growth, and embryonic development were evaluated. Finally, the delivery of live pups after embryo transfer into recipient mice was assessed. While PPARγ was expressed in ovaries from mice of all ages, its levels were significantly increased in ovaries from 20-day-old mice. In GW9662-treated ovaries in vitro, PTEN levels were decreased, AKT was activated, and FOXO3a was excluded from the nuclei of primordial follicles. After 1 month, cPA-pretreated, transplanted ovaries produced the highest numbers of oocytes and polar bodies, exhibited the most advanced embryonic development, and had the greatest blastocyst formation rate compared to the rosiglitazone- and GW9662-pretreated groups. Additionally, the successful delivery of live pups after embryo transfer into the recipient mice transplanted with cPA-pretreated ovaries was confirmed. Our study demonstrates that PPARγ participates in primordial follicle activation and development, possibly mediated in part by the PI3K/AKT signaling pathway. Although more studies are required, adapting these findings for the activation of human primordial follicles may lead to treatments for infertility that originates from poor ovarian reserves.


Zygote ◽  
2014 ◽  
Vol 23 (4) ◽  
pp. 537-549 ◽  
Author(s):  
Regislane P. Ribeiro ◽  
Antonia M.L.R. Portela ◽  
Anderson W.B. Silva ◽  
José J.N. Costa ◽  
José R.S. Passos ◽  
...  

SummaryThis study aims to investigate the effects of jacalin and follicle-stimulating hormone (FSH) on activation and survival of goat primordial follicles, as well as on gene expression in cultured ovarian tissue. Ovarian fragments were cultured for 6 days in minimum essential medium (MEM) supplemented with jacalin (10, 25, 50 or 100 μg/ml – Experiment 1) or in MEM supplemented with jacalin (50 μg/ml), FSH (50 ng/ml) or both (Experiment 2). Non-cultured and cultured tissues were processed for histological and ultrastructural analysis. Cultured tissues from Experiment 2 were also stored to evaluate the expression of BMP-15, KL (Kit ligand), c-kit, GDF-9 and proliferating cell nuclear antigen (PCNA) by real-time polymerase chain reaction (PCR). The results of Experiment 1 showed that, compared with tissue that was cultured in control medium, the presence of 50 μg/ml of jacalin increased both the percentages of developing follicles and viability. In Experiment 2, after 6 days, higher percentages of normal follicles were observed in tissue cultured in presence of FSH, jacalin or both, but no synergistic interaction between FSH and jacalin was observed. These substances had no significant effect on the levels of mRNA for BMP-15 and KL, but FSH increased significantly the levels of mRNA for PCNA and c-kit. On the other hand, jacalin reduced the levels of mRNA for GDF-9. In conclusion, jacalin and FSH are able to improve primordial follicle activation and survival after 6 days of culture. Furthermore, presence of FSH increases the expression of mRNA for PCNA and c-kit, but jacalin resulted in lower GDF-9 mRNA expression.


2017 ◽  
Vol 86 (3) ◽  
pp. 237
Author(s):  
Małgorzata Agnieszka Szczepańska ◽  
Paweł P. Jagodziński ◽  
Ewa Wender‑Ożegowska

An ovarian endometrioma is a very common form of endometriosis in women of reproductive age. This review presents the current state of research on ovarian reserve in women with ovarian endometriomas. Endometrioma can negatively affect ovarian markers: the anti‑Müllerian hormone (AMH), antral follicle count (AFC) and in vitro fertilisation (IVF) results. Decisions on the surgical treatment of endometrial cysts should be carefully thought through, especially in women who have not given birth.


2006 ◽  
Vol 189 (1) ◽  
pp. 113-125 ◽  
Author(s):  
J R V Silva ◽  
T Tharasanit ◽  
M A M Taverne ◽  
G C van der Weijden ◽  
R R Santos ◽  
...  

The aim of the present study was to investigate the effects of activin-A and follistatin on in vitro primordial and primary follicle development in goats. To study primordial follicle development (experiment 1), pieces of ovarian cortex were cultured in vitro for 5 days in minimal essential medium (MEM) supplemented with activin-A (0, 10 or 100 ng/ml), follistatin (0, 10 or 100 ng/ml) or combinations of the two. After culture, the numbers of primordial follicles and more advanced follicle stages were calculated and compared with those in non-cultured tissue. Protein and mRNA expression of activin-A, follistatin, Kit ligand (KL), growth differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15) in non-cultured and cultured follicles were studied by immunohistochemistry and PCR. To evaluate primary follicle growth (experiment 2), freshly isolated follicles were cultured for 6 days in MEM plus 100 ng/ml activin-A, 100 ng/ml follistatin or 100 ng/ml activin-A plus 200 ng/ml follistatin. Morphology, follicle and oocyte diameters in cultured tissue and isolated follicles before and after culture were assessed. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) reactions were performed to study DNA fragmentation in follicles. In experiment 1, it was found that goat primordial follicles were activated to develop into more advanced stages, i.e. intermediate and primary follicles, during in vitro culture, but neither activin-A nor follistatin affected the number of primordial follicles that entered the growth phase. Activin-A treatment enhanced the number of morphologically normal follicles and stimulated their growth during cortical tissue culture. The effects were, however, not counteracted by follistatin. The follicles in cultured goat tissue maintained their expression of proteins and mRNA for activin-A, follistatin, KL, GDF-9 and BMP-15. Fewer than 30% of the atretic follicles in cultured cortical tissue had TUNEL-positive (oocyte or granulosa) cells. Activin-A did not affect the occurrence of TUNEL-positive cells in follicles within cortical tissue. In experiment 2, addition of activin-A to cultured isolated primary follicles significantly stimulated their growth, the effect being counteracted by follistatin. Absence of such a neutralizing effect of follistatin in the cultures with ovarian cortical tissue can be due to lower dose of follistatin used and incomplete blockage of activin in these experiments. In contrast to cortical enclosed atretic follicles, all atretic follicles that had arisen in cultures with isolated primary follicles had TUNEL-positive cells, which points to differences between isolated and ovarian tissue-enclosed follicles with regard to the followed pathways leading to their degeneration. In summary, this in vitro study has demonstrated that cultured goat primordial follicles are activated to grow and develop into intermediate and primary follicles. During in vitro culture, the follicles maintain their ability to express activin-A, follistatin, KL, GDF-9 and BMP-15. The in vitro growth and survival of activated follicles enclosed in cortical tissue and the in vitro growth of isolated primary follicles are stimulated by activin-A.


Endocrinology ◽  
2007 ◽  
Vol 148 (8) ◽  
pp. 3580-3590 ◽  
Author(s):  
Ying Chen ◽  
Wendy N. Jefferson ◽  
Retha R. Newbold ◽  
Elizabeth Padilla-Banks ◽  
Melissa E. Pepling

In developing mouse ovaries, oocytes develop as clusters of cells called nests or germ cell cysts. Shortly after birth, oocyte nests dissociate and granulosa cells surround individual oocytes forming primordial follicles. At the same time, two thirds of the oocytes die by apoptosis, but the link between oocyte nest breakdown and oocyte death is unclear. Although mechanisms controlling breakdown of nests into individual oocytes and selection of oocytes for survival are currently unknown, steroid hormones may play a role. Treatment of neonatal mice with natural or synthetic estrogens results in abnormal multiple oocyte follicles in adult ovaries. Neonatal genistein treatment inhibits nest breakdown suggesting multiple oocyte follicles are nests that did not break down. Here we investigated the role of estrogen signaling in nest breakdown and oocyte survival. We characterized an ovary organ culture system that recapitulates nest breakdown, reduction in oocyte number, primordial follicle assembly, and follicle growth in vitro. We found that estradiol, progesterone, and genistein inhibit nest breakdown and primordial follicle assembly but have no effect on oocyte number both in organ culture and in vivo. Fetal ovaries, removed from their normal environment of high levels of pregnancy hormones, underwent premature nest breakdown and oocyte loss that was rescued by addition of estradiol or progesterone. Our results implicate hormone signaling in ovarian differentiation with decreased estrogen and progesterone at birth as the primary signal to initiate oocyte nest breakdown and follicle assembly. These findings also provide insight into the mechanism of multiple oocyte follicle formation.


Sign in / Sign up

Export Citation Format

Share Document