scholarly journals Trophoblast differentiation in vitro: establishment and characterisation of a serum-free culture model for murine secondary trophoblast giant cells

Reproduction ◽  
2004 ◽  
Vol 128 (1) ◽  
pp. 53-71 ◽  
Author(s):  
A H K El-Hashash ◽  
S J Kimber

Differentiation of trophoblast giant cells is an early event during the process of murine embryo implantation. However, differentiation of secondary trophoblast giant cells in the rodent is still only partially understood, probably because of the lack of suitablein vitromodels and cell markers. In order to advance our understanding of trophoblast differentiation, suitablein vitromodels and markers are required to study their development. The objectives of this study were to establish and characterise a serum-freein vitromodel for murine secondary trophoblast cells. Secondary trophoblast giant cells growingin vitroand paraffin sections of day 8.5 postcoitum mouse embryos were processed for immunostaining to establish the expression of potential markers using antibodies to blood group antigens, E-cadherin, α7integrins and activator protein-γ, as well as placental lactogen-II. Within 3 days in serum-free culture, ectoplacental cone-derived secondary trophoblast cells underwent simultaneous induction of both morphological and functional differentiation. Secondary trophoblasts grewin vitroas a monolayer of cells with giant nuclei and expressed B and Le-b/Le-y blood group antigens, α7integrins and placental lactogen-II, as well as activator protein-γ. Transcripts for activator protein-γ and placental lactogen-II were detected in cultures by RT-PCR and for placental lactogen-II byin situhybridisation. At later time-points apoptosis increased. A fibronectin substrate significantly increased secondary trophoblast cell numbers and surface area of outgrowth. The increase in cells with giant nuclei coincided with induction of placental lactogen-II expression. A relationship was found between the nuclear area of secondary trophoblast cells and expression of placental lactogen-II.

2000 ◽  
Vol 165 (2) ◽  
pp. 443-456 ◽  
Author(s):  
TJ Peters ◽  
BM Chapman ◽  
MW Wolfe ◽  
MJ Soares

Trophoblast giant cells are one of the primary endocrine cell types of the rodent placenta. Placental lactogen-I (PL-I) is the initial prolactin (PRL) family member expressed as trophoblast giant cells differentiate. In this report, we use the Rcho-1 trophoblast cell line as a model for studying the regulation of PL-I gene expression during trophoblast giant cell differentiation. Evidence is provided for trophoblast cell expression of epidermal growth factor receptor (EGFR), ErbB2, fibroblast growth factor receptor 1 (FGFR1), transforming growth factor-alpha, and heparin-binding EGF. EGF and FGF-2 stimulated PL-I mRNA and protein accumulation and PL-I promoter activity in a concentration-dependent manner. These latter growth factor actions on PL-I promoter activities were specifically inhibited by cotransfection with dominant negative constructs for EGFR and FGFRs respectively. Utilization of the mitogen-activated protein kinase (MAPK) pathway by EGF and FGF-2 in trophoblast cells was demonstrated by growth factor stimulation of a Gal4 DNA binding/Elk1 transactivational domain fusion construct, and more specifically by activation of extracellular signal regulated kinase and p38 MAPK. PL-I gene activation was also sensitive to disruption of MAPK and activation protein-1 (AP-1) signaling pathways. In conclusion, autocrine/paracrine pathways involving EGFR and FGFR1, MAPK and AP-1 are shown to participate in the regulation of the PL-I gene in differentiating trophoblast cells.


Reproduction ◽  
2004 ◽  
Vol 128 (2) ◽  
pp. 207-218 ◽  
Author(s):  
A Amarante-Paffaro ◽  
G S Queiroz ◽  
S T Corrêa ◽  
B Spira ◽  
E Bevilacqua

Trophoblast giant cells are active phagocytes during implantation and post-implantation. Phagocytosis decreases during placental maturation as the phagocytic function of nutrition is gradually replaced by the direct uptake of nutrients by the labyrinth zone trophoblast. We hypothesize that, after placental maturation, trophoblast cells maintain phagocytic functions for purposes other than nutrition. This study employs histological techniques to examine the ability of trophoblast cells to phagocytose microorganisms (yeast or bacteria)–in vivoin females receiving thioglycolate to activate macrophages andin vitroin the presence of phagocytic promoters such as interferon-γ and complement component C3. Placental trophoblast cells from the second half of gestation show basal phagocytosis that can be dramatically up-regulated by these promoters when microorganisms are inoculated into pregnant animals or introduced into culture systems. Stimulated trophoblast cells phagocytosed organisms more rapidly and in greater numbers than non-stimulated trophoblast exposed to the same numbers of organisms. Taken together, our results indicate that trophoblast cells do not lose their ability to phagocytose during the placentation process, which may imply that trophoblast cells participate in embryonic and fetal innate immune defense through elimination of microorganisms present at the maternal–fetal interface.


Development ◽  
1981 ◽  
Vol 61 (1) ◽  
pp. 277-287
Author(s):  
A. J. Copp

The number of trophoblast giant cells in outgrowths of mouse blastocysts was determined before, during and after egg-cylinder formation in vitro. Giant-cell numbers rose initially but reached a plateau 12 h before the egg cylinder appeared. A secondary increase began 24 h after egg-cylinder formation. Blastocysts whose mural trophectoderm cells were removed before or shortly after attachment in vitro formed egg cylinders at the same time as intact blastocysts but their trophoblast outgrowths contained fewer giant cells at this time. The results support the idea that egg-cylinder formation in vitro is accompanied by a redirection of the polar to mural trophectoderm cell movement which characterizes blastocysts before implantation. The resumption of giant-cell number increase in trophoblast outgrowths after egg-cylinder formation may correspond to secondary giant-cell formation in vivo. It is suggested that a time-dependent change in the strength of trophoblast cell adhesion to the substratum occurs after blastocyst attachment in vitro which restricts the further entry of polar cells into the outgrowth and therefore results in egg-cylinder formation.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2513-2523 ◽  
Author(s):  
J.C. Cross ◽  
M.L. Flannery ◽  
M.A. Blanar ◽  
E. Steingrimsson ◽  
N.A. Jenkins ◽  
...  

Trophoblast cells are the first lineage to form in the mammalian conceptus and mediate the process of implantation. We report the cloning of a basic helix-loop-helix (bHLH) transcription factor gene, Hxt, that is expressed in early trophoblast and in differentiated giant cells. A separate gene, Hed, encodes a related protein that is expressed in maternal deciduum surrounding the implantation site. Overexpression of Hxt in mouse blastomeres directed their development into trophoblast cells in blastocysts. In addition, overexpression of Hxt induced the differentiation of rat trophoblast (Rcho-1) stem cells as assayed by changes in cell adhesion and by activation of the placental lactogen-I gene promoter, a trophoblast giant cell-specific gene. In contrast, the negative HLH regulator, Id-1, inhibited Rcho-1 differentiation and placental lactogen-I transcription. These data demonstrate a role for HLH factors in regulating trophoblast development and indicate a positive role for Hxt in promoting the formation of trophoblast giant cells.


Development ◽  
1975 ◽  
Vol 34 (3) ◽  
pp. 633-644
Author(s):  
Danièle Hernandez-Verdun ◽  
Chantal Legrand

Mouse chorioallantoic pre-placental structures alone or in association with the embryo were explanted during the 9th day of gestation (7-somite stage) and cultured in a static medium for 24 to 48 h. From the subsequent morphological study of trophoblast differentiation, using both light and electron microscopy, we draw the following conclusions. 1. The allantoic mesoderm cells migrate inside the trophoblastic population but they do not differentiate a capillary network and trophoblast cells phagocytose the existing foetal erythrocytes. 2. In the absence of allantoic mesoderm, chorionic trophoblast cells remain undifferentiated. 3. The development of the chorionic trophoblast is modified in that chorionic trophoblast cells fail to establish close junctions with ectoplacental trophoblast, and some chorionic cells initiate the formation of multinucleated syncytia. The genesis of these syncytia is discussed.


Endocrinology ◽  
2014 ◽  
Vol 155 (8) ◽  
pp. 3054-3064 ◽  
Author(s):  
Victoria Cabrera-Sharp ◽  
Jordan E. Read ◽  
Stephanie Richardson ◽  
Alycia A. Kowalski ◽  
Douglas F. Antczak ◽  
...  

TGFβ superfamily proteins, acting via SMAD (Sma- and Mad-related protein)2/3 pathways, regulate placental function; however, the role of SMAD1/5/8 pathway in the placenta is unknown. This study investigated the functional role of bone morphogenetic protein (BMP)4 signaling through SMAD1/5 in terminal differentiation of primary chorionic gonadotropin (CG)-secreting trophoblast. Primary equine trophoblast cells or placental tissues were isolated from day 27–34 equine conceptuses. Detected by microarray, RT-PCR, and quantitative RT-PCR, equine chorionic girdle trophoblast showed increased gene expression of receptors that bind BMP4. BMP4 mRNA expression was 20- to 60-fold higher in placental tissues adjacent to the chorionic girdle compared with chorionic girdle itself, suggesting BMP4 acts primarily in a paracrine manner on the chorionic girdle. Stimulation of chorionic girdle-trophoblast cells with BMP4 resulted in a dose-dependent and developmental stage-dependent increase in total number and proportion of terminally differentiated binucleate cells. Furthermore, BMP4 treatment induced non-CG-secreting day 31 chorionic girdle trophoblast cells to secrete CG, confirming a specific functional response to BMP4 stimulation. Inhibition of SMAD2/3 signaling combined with BMP4 treatment further enhanced differentiation of trophoblast cells. Phospho-SMAD1/5, but not phospho-SMAD2, expression as determined by Western blotting was tightly regulated during chorionic girdle trophoblast differentiation in vivo, with peak expression of phospho-SMAD1/5 in vivo noted at day 31 corresponding to maximal differentiation response of trophoblast in vitro. Collectively, these experiments demonstrate the involvement of BMP4-dependent pathways in the regulation of equine trophoblast differentiation in vivo and primary trophoblast differentiation in vitro via activation of SMAD1/5 pathway, a previously unreported mechanism of TGFβ signaling in the mammalian placenta.


2018 ◽  
Vol 30 (3) ◽  
pp. 519 ◽  
Author(s):  
Crystalyn B. Legg-St Pierre ◽  
Martina Mackova ◽  
Ewa I. Miskiewicz ◽  
Denise G. Hemmings ◽  
Suraj Unniappan ◽  
...  

The placenta is the physiological bridge between mother and fetus and has life-sustaining functions during pregnancy, including metabolic regulation, fetal protection and hormone secretion. Nucleobindin-2 (NUCB2) is a calcium- and DNA-binding protein and precursor of nesfatin-1, a signalling peptide with multiple functions, including regulation of energy homeostasis and glucose transport. These are also key functions of the placenta, yet NUCB2/nesfatin-1 expression has never been comprehensively studied in this organ. In the present study, mouse placental samples from Embryonic Day (E) 7.5 to E17.5 and human chorionic villi from the first and second trimester, as well as term pregnancy, were analysed for NUCB2/nesfatin-1 expression by immunohistochemistry with an antiserum that recognised both NUCB2 and nesfatin-1. From E7.5 to E9.5, NUCB2/nesfatin-1 was expressed in the ectoplacental cone, then parietal trophoblast giant cells and early spongiotrophoblast. At E10.5–12.5, NUCB2/nesfatin-1 expression became detectable in the developing labyrinth. From E12.5 and onwards, NUCB2/nesfatin-1 was expressed in the glycogen trophoblast cells, as well as highly expressed in syncytiotrophoblast, sinusoidal trophoblast giant cells and fetal capillary endothelial cells of the labyrinth. In all trimesters of human pregnancy, NUCB2/nesfatin-1 was highly expressed in syncytiotrophoblast. In addition, there was a significant increase in NUCB2 expression in human primary trophoblast cells induced to syncytialise. Thus, the haemochorial mammalian placenta is a novel source of NUCB2/nesfatin-1 and likely a site of its action, with potential roles in glucose homeostasis and/or nutrient sensing.


Development ◽  
1981 ◽  
Vol 66 (1) ◽  
pp. 43-55
Author(s):  
J. Rossant ◽  
K. M. Vijh

Embryos homozygous for the velvet coat mutation, Ve/Ve, were recognized at 6·5 days post coitum by the reduced size of the ectodermal portions of the egg cylinder and the loose, columnar nature of the overlying endoderm. Later in development ectoderm tissues were sometimes entirely absent. Abnormalities appeared in the ectoplacental cone at 8·5 days but trophoblast giant cells and parietal endoderm appeared unaffected. Homozygotes could not be unequivocally identified at 5·5 days nor at the blastocyst stage but were recognized in blastocyst outgrowths by poor development of the inner cell mass derivatives, It has previously been suggested that Ve may exert its action at the blastocyst stage by reducing the size of the inner cell mass, but no evidence for such a reduction was found. Most of the observations on Ve/Ve homozygotes are, however, consistent with the hypothesis that Ve exerts its action primarily on later primitive ectoderm development.


Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 447-456 ◽  
Author(s):  
O. Behrendtsen ◽  
C.M. Alexander ◽  
Z. Werb

The maintenance and developmental remodeling of extracellular matrix is crucial to such processes as uterine implantation and the cell migratory events of morphogenesis. When mouse blastocysts are placed in culture they adhere to extracellular matrix, and trophoblast giant cells migrate out onto the matrix and degrade it. The secretion of functional proteinases by developing mouse embryos increases dramatically at the time of implantation. By zymography we identified the major secreted gelatin-degrading proteinase, also known as type IV collagenase, as one migrating at 92 × 10(3) Mr. Several casein-degrading proteinases were also secreted. The tissue inhibitor of metalloproteinases (TIMP) inhibited all of the embryo-derived proteinases detected by gelatin gel zymography, indicating that they are metalloproteinases, whereas TIMP did not inhibit all of the caseinases. Urokinase was also secreted. Addition of TIMP at 5–500 nM effectively inhibited the degradation of matrix by the trophoblast outgrowths. Blocking antibodies directed against 92 × 10(3) Mr gelatinase abolished matrix degradation by the trophoblast cells. These observations suggest that several metalloproteinases are regulated in early development and that 92 × 10(3) Mr gelatinase, in particular, has a rate-limiting function in degradation of the maternal extracellular matrix by trophoblast cells.


Sign in / Sign up

Export Citation Format

Share Document