scholarly journals The capability of reprogramming the male chromatin after fertilization is dependent on the quality of oocyte maturation

Reproduction ◽  
2005 ◽  
Vol 130 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Luisa Gioia ◽  
Barbara Barboni ◽  
Maura Turriani ◽  
Giulia Capacchietti ◽  
Maria Gabriella Pistilli ◽  
...  

The present experiments compared the ability of pig oocytes matured eitherin vivoorin vitroto structurally reorganize the penetrated sperm chromatin into male pronucleus (PN) and to carry out, in parallel, the epigenetic processes of global chromatin methylation and acetylation, 12–14 h afterin vitrofertilization (IVF). In addition, PN distribution of histone deacetylase (HDAC), a major enzyme interfacing DNA methylation and histone acetylation, was investigated. The ability of the oocyte to operate an efficient block to polyspermy was markedly affected by maturation. The monospermic fertilization rate was significantly higher forin vivothan forin vitromatured (IVM) oocytes(P< 0.01) which, furthermore, showed a reduced ability to transform the chromatin of penetrated sperm into male PN(P< 0.01). Indirect immunofluorescence analysis of global DNA methylation, histone acetylation and HDAC distribution (HDAC-1, -2 and -3), carried out in monospermic zygotes that reached the late PN stage, showed that IVM oocytes also had a reduced epigenetic competence. In fact, while in about 80% ofin vivomatured and IVF oocytes the male PN underwent a process of active demethylation and showed a condition of histone H4 hyperacetylation, only 40% of IVM/IVF zygotes displayed a similar PN remodelling asymmetry. Oocytes that carried out the first part of maturationin vivo(up to germinal vesicle breakdown; GVBD) and then completed the processin vitro, displayed the same PN asymmetry as oocytes matured entirelyin vivo. A crucial role of HDAC in the establishment of PN acetylation asymmetry seems to be confirmed by the use of HDAC inhibitors as well as by the abnormal distribution of the enzyme between the two PN in IVM zygotes. Collectively, these data demonstrated that some pig IVM oocytes fail to acquire full remodelling competence which is independent from their ooplasmic ability to morphologically reorganize the sperm nucleus into PN.

2006 ◽  
Vol 189 (2) ◽  
pp. 341-353 ◽  
Author(s):  
A Mishra ◽  
K P Joy

An HPLC method was used to tentatively identify progesterone (P4) and its metabolites (17-hydroxyprogesterone (17-P4) and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P)), corticosteroids (cortisol and corticosterone) and testosterone in ovary/follicular preparations of the catfish Heteropneustes fossilis associated with in vivo or in vitro oocyte maturation/ovulation. A single i.p. injection of human chorionic gonadotrophin (100 IU/fish, sampled at 0, 8 and 16 h) induced oocyte maturation and ovulation, which coincided with significant and progressive increases in 17,20β-P, and P4 and 17-P4, the precursors of the former. Both cortisol and corticosterone also increased significantly. Conversely, testosterone decreased significantly and progressively over time. Under in vitro conditions, incubation of post-vitellogenic (intact) follicles or follicular envelope (layer) with 2-hydroxyoestradiol (2-OHE2, 5 μM for 0, 6 and 24 h) elicited a sharp significant increase in 17,20β-P, the increase being higher in the follicular envelope incubate. P4 and 17-P4 also registered significant increases over the time with the peak values at 24 h. Cortisol and corticosterone increased significantly in the intact follicle, but not in the follicular envelope incubate. Testosterone decreased significantly in the intact follicle, but increased significantly (24 h) in the follicular envelope incubate. Coincident with these changes, the percentage of germinal vesicle breakdown (GVBD) increased over the time in the intact follicle incubate (48.9% at 6 h and 79.8% at 24 h). Denuded oocytes on incubation with 2-OHE2 (5 μM) did not produce any significant change in the percentage of GVBD or in the steroid profile. While corticosterone and 17,20β-P were undetected, P4, 17-P4, cortisol and testosterone were detected in low amounts. The results show that the 2-OHE2-induced GVBD response seems to be mediated through the production of 17,20β-P and corticosteroids. It is suggested that hydroxyoestrogens seem to be a component in the gonadotrophin cascade of regulation of oocyte maturation/ovulation in the catfish.


Blood ◽  
2010 ◽  
Vol 116 (3) ◽  
pp. 475-484 ◽  
Author(s):  
Arin B. Aurora ◽  
Dauren Biyashev ◽  
Yelena Mirochnik ◽  
Tetiana A. Zaichuk ◽  
Cristina Sánchez-Martinez ◽  
...  

Abstract Extracellular factors control the angiogenic switch in endothelial cells (ECs) via competing survival and apoptotic pathways. Previously, we showed that proangiogenic and antiangiogenic factors target the same signaling molecules, which thereby become pivots of angiogenic balance. Here we show that in remodeling endothelium (ECs and EC precursors) natural angiogenic inhibitors enhance nuclear factor-κB (NF-κB) DNA binding, which is critical for antiangiogenesis, and that blocking the NF-κB pathway abolishes multiple antiangiogenic events in vitro and in vivo. NF-κB induction by antiangiogenic molecules has a dual effect on transcription. NF-κB acts as an activator of proapoptotic FasL and as a repressor of prosurvival cFLIP. On the FasL promoter, NF-κB increases the recruitment of HAT p300 and acetylated histones H3 and H4. Conversely, on cFLIP promoter, NF-κB increases histone deacetylase 1 (HDAC1), decreases p300 and histone acetylation, and reduces the recruitment of NFAT, a transcription factor critical for cFLIP expression. Finally, we found a biphasic effect, when HDAC inhibitors (HDACi) were used to test the dependence of pigment epithelial-derived factor activity on histone acetylation. The cooperative effect seen at low doses switches to antagonistic as the concentrations increase. Our study defines an interactive transcriptional network underlying angiogenic balance and points to HDACi as tools to manipulate the angiogenic switch.


Reproduction ◽  
2016 ◽  
Vol 151 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Debabrata Das ◽  
Soumojit Pal ◽  
Sudipta Maitra

Binding of 17β-estradiol (E2) to novel G-protein coupled receptor, Gper1, promotes intra-oocyte adenylyl cyclase activity and transactivates epidermal growth factor receptor to ensure prophase-I arrest. Although involvement of either membrane progestin receptor (mPR) or Igf system has been implicated in regulation of meiosis resumption, possibility of concurrent activation and potential synergism between 17α,20β-dihydroxy-4-pregnen-3-one (DHP)- and Igf-mediated signalling cascades in alleviating E2 inhibition of oocyte maturation (OM) has not been investigated. Here using zebrafish (Danio rerio) defolliculated oocytes, we examined the effect of DHP and Igf1, either alone or in combination, in presence or absence of E2, on OM in vitro. While priming of denuded oocytes with E2 blocked spontaneous maturation, co-treatment with DHP (3 nM) and Igf1 (10 nM), but not alone, reversed E2 inhibition and promoted a robust increase in germinal vesicle breakdown (GVBD). Although stimulation with either Igf1 or DHP promoted Akt phosphorylation, pharmacological inhibition of PI3K/Akt signalling prevented Igf1-induced GVBD but delayed DHP action till 4–5 h of incubation. Moreover, high intra-oocyte cAMP attenuates both DHP and Igf1-mediated OM and co-stimulation with DHP and Igf1 could effectively reverse E2 action on PKA phosphorylation. Interestingly, data from in vivo studies reveal that heightened expression of igf1, igf3 transcripts in intact follicles corresponded well with elevated phosphorylation of Igf1r and Akt, mPRa immunoreactivity, PKA inhibition and accelerated GVBD response just prior to ovulation. This indicates potential synergism between maturational steroid and Igf1 which might have physiological relevance in overcoming E2 inhibition of meiosis resumption in zebrafish oocytes.


2014 ◽  
Vol 46 (7) ◽  
pp. 245-255 ◽  
Author(s):  
Pankaj Chaturvedi ◽  
Anuradha Kalani ◽  
Srikanth Givvimani ◽  
Pradip Kumar Kamat ◽  
Anastasia Familtseva ◽  
...  

The mechanisms of homocysteine-mediated cardiac threats are poorly understood. Homocysteine, being the precursor to S-adenosyl methionine (a methyl donor) through methionine, is indirectly involved in methylation phenomena for DNA, RNA, and protein. We reported previously that cardiac-specific deletion of N-methyl-d-aspartate receptor-1 (NMDAR1) ameliorates homocysteine-posed cardiac threats, and in this study, we aim to explore the role of NMDAR1 in epigenetic mechanisms of heart failure, using cardiomyocytes during hyperhomocysteinemia (HHcy). High homocysteine levels activate NMDAR1, which consequently leads to abnormal DNA methylation vs. histone acetylation through modulation of DNA methyltransferase 1 (DNMT1), HDAC1, miRNAs, and MMP9 in cardiomyocytes. HL-1 cardiomyocytes cultured in Claycomb media were treated with 100 μM homocysteine in a dose-dependent manner. NMDAR1 antagonist (MK801) was added in the absence and presence of homocysteine at 10 μM in a dose-dependent manner. The expression of DNMT1, histone deacetylase 1 (HDAC1), NMDAR1, microRNA (miR)-133a, and miR-499 was assessed by real-time PCR as well as Western blotting. Methylation and acetylation levels were determined by checking 5′-methylcytosine DNA methylation and chromatin immunoprecipitation. Hyperhomocysteinemic mouse models (CBS+/−) were used to confirm the results in vivo. In HHcy, the expression of NMDAR1, DNMT1, and matrix metalloproteinase 9 increased with increase in H3K9 acetylation, while HDAC1, miR-133a, and miR-499 decreased in cardiomyocytes. Similar results were obtained in heart tissue of CBS+/− mouse. High homocysteine levels instigate cardiovascular remodeling through NMDAR1, miR-133a, miR-499, and DNMT1. A decrease in HDAC1 and an increase in H3K9 acetylation and DNA methylation are suggestive of chromatin remodeling in HHcy.


2006 ◽  
Vol 18 (2) ◽  
pp. 109 ◽  
Author(s):  
A. Bonk ◽  
M. Samuel ◽  
L. Lai ◽  
Y. Hao ◽  
R. Li ◽  
...  

Aberrant DNA methylation of in vitro-, parthenogenetic-, and nuclear transfer-derived embryos has been implicated in the low developmental competence of early embryos. Demethylation of the genome occurs immediately after fertilization and continues through the blastocyst stage. Remethylation or reprogramming of the genome occurs around the time of implantation and is maintained in somatic tissues. The aim of this study was to analyze DNA methylation in porcine gametes and blastocysts. Differential DNA methylation hybridization was conducted to analyze the methylation status of the Bstu I site (CGCG) in the gamete and blastocyst epigenomes. Germinal vesicle oocytes were aspirated from ovaries collected at an abattoir, sperm was isolated from a fresh ejaculate, and blastocysts were derived and collected from in vivo, in vitro, nuclear transfer, and parthenogenetic sources. Genomic clones were selected from a porcine CpG Island library based on the presence of a Bstu I site. The inserts from these clones were PCR amplified and spotted on glass slides. DNA was digested with Mse I, ligated to linkers, and digested with Bstu I. Fragments with methylated Bstu I sites remained intact whereas fragments with unmethylated Bstu I sites were cut. Intact fragments were amplified by PCR and labeled with amino allyl-dUTP. Liver DNA served as the reference and was labeled with Cy5; the other samples were labeled with Cy3. An Axon Genepix 4000B scanner (Axon Instruments, Inc., Union City, CA, USA) was used to scan the slides. Initial analysis of the microarray image was performed with GenePix Pro 4.0 software. Additional analysis, performed by using Genespring 7.0 ANOVA (P < 0.05), identified 221 clones as being significantly different in at least one of the biological conditions of the gametes or the blastocysts. Forty-six clones were sequenced and BLAST analysis identified 18 clones that were unique, 16 clones that had no similarity, and 12 clones that had similarity to multiple genes. Ribosomal (RPS20, RPL18) and protoporphyrinogen oxidase (PPOX) genes were identified in several clones. Components of the immune system (CCRs, TLRs), a transcription factor (ATF2), and an embryo-specific gene (WNT8B) were also identified. A condition tree was created according to the standard correlation similarity measure for the spots identified as significantly different. The condition tree shows that the methylation profiles are most similar in the germinal vesicle oocyte, parthenogenetic blastocyst, nuclear transfer blastocyst, in vitro-produced blastocyst, and sperm. In vivo-produced blastocysts grouped separately from the other samples. These results are consistent with previous studies that have shown that gametes undergo demethylation after fertilization on through the blastocyst stage when the genome is remethylated. Additionally, these results suggest that the reprogramming events that occur during the development of the in vivo-produced blastocysts are less likely to occur in in vitro-, nuclear transfer-, and parthenogenetic-produced blastocysts. This work was funded by a grant from the NIH (RR13438) and Food for the 21st Century.


2014 ◽  
Vol 26 (1) ◽  
pp. 199
Author(s):  
M. P. Cervantes ◽  
M. Anzar ◽  
R. J. Mapletoft ◽  
J. M. Palomino ◽  
G. P. Adams

Technologies are being developed to conserve the genetic diversity of wood bison. Knowledge of the characteristics of in vivo and in vitro maturation of the cumulus–oocyte complex (COC) are needed in wood bison to design efficient in vitro embryo production protocols. The objectives were to (1) determine the optimal interval after hCG treatment for in vivo maturation of COC in superstimulated wood bison, and (2) compare the characteristics of COC after in vitro and in vivo maturation. Ovarian synchronization was induced in 25 bison during October and November by giving a luteolytic dose of prostaglandin followed 8 days later by follicular ablation (Day –1). Ovarian superstimulation was induced with FSH (Folltropin-V) given i.m. on Day 0 (300 mg) and Day 2 (100 mg). A second luteolytic dose of prostaglandin was given on Day 3. Bison were assigned randomly to 5 groups (n = 5/group). The COC were collected by transvaginal follicle aspiration on Day 4 and were either assessed immediately (0 h, control), or matured in vitro for 24 or 30 h (in vitro maturation), or collected on Day 5 (in vivo maturation), 24 or 30 h after bison were given 2000 IU of hCG i.m. on Day 4. In vitro maturation was done in TCM-199 with 5% calf serum, 5 μg mL–1 LH, 0.5 μg mL–1 FSH, and 0.05 μg mL–1 gentamicin, at 38.5°C and in a 5% CO2 humidified atmosphere. Nuclear maturation was classified as germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), or metaphase II (MII) with anti-lamin AC/DAPI staining. Groups were compared by analysis of variance and Fisher's exact test (Table 1). A mean (±s.e.m.) of 7.3 ± 1.7 COC were collected per bison, with no difference among groups. The COC in the control (0 h) group were at the nonexpanded GV stage. Cumulus cells were more expanded after in vivo than in vitro maturation, and the percentage of fully expanded COC was the highest in the 30-h in vivo maturation group (87%; P < 0.05). The greatest number of oocytes reached MII stage after 24 h of in vitro maturation, and 30 h of in vivo maturation. In conclusion, nuclear maturation occurred more quickly in vitro compared with in vivo, but the degree and incidence of cumulus expansion was greater after in vivo maturation. The competence of oocytes to undergo fertilization and develop into embryos remains to be investigated. Table 1.Cumulus expansion and nuclear maturation of wood bison oocytes


2019 ◽  
Vol 18 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Sorabh Sharma ◽  
K.C. Sarathlal ◽  
Rajeev Taliyan

Background & Objective: Imbalance in histone acetylation levels and consequently the dysfunction in transcription are associated with a wide variety of neurodegenerative diseases. Histone proteins acetylation and deacetylation is carried out by two opposite acting enzymes, histone acetyltransferases and histone deacetylases (HDACs), respectively. In-vitro and in-vivo animal models of neurodegenerative diseases and post mortem brains of patients have been reported overexpressed level of HDACs. In recent past numerous studies have indicated that HDAC inhibitors (HDACIs) might be a promising class of therapeutic agents for treating these devastating diseases. HDACs being a part of repressive complexes, the outcome of their inhibition has been attributed to enhanced gene expression due to heightened histone acetylation. Beneficial effects of HDACIs has been explored both in preclinical and clinical studies of these diseases. Thus, their screening as future therapeutics for neurodegenerative diseases has been widely explored. Conclusion: In this review, we focus on the putative role of HDACs in neurodegeneration and further discuss their potential as a new therapeutic avenue for treating neurodegenerative diseases.


1981 ◽  
Vol 241 (1) ◽  
pp. E51-E56 ◽  
Author(s):  
C. A. Lessman ◽  
A. W. Schuetz

The involvement of the ovarian follicle wall in insulin induction of Rana pipiens oocyte maturation in vitro was examined. Complete removal of the follicle wall significantly decreased, but did not obliterate, oocyte maturation (i.e., germinal vesicle breakdown, GVBD) induced by insulin. Dose-response studies of GVBD induction revealed that oocytes within intact follicles were at least 100 times more sensitive to insulin than denuded oocytes. Addition of cyanoketone, a steroid biosynthesis inhibitor, to intact follicles also suppressed insulin-induced GVBD. Inhibitory effects of either follicle wall removal or cyanoketone were not observed when denuded oocytes were treated with progesterone. Addition of either progesterone or pregnenolone to insulin-treated denuded oocytes augmented the oocyte GVBD response compared to either steroid alone and essentially replaced the effect of the follicle wall. In summary, steroidogenesis in the follicle wall appears to be a major factor contributing to the ability of insulin to induce GVBD. However, whether insulin stimulates follicle wall steroidogenesis or simply augments the biological activity of endogenous basal steroid levels is unresolved. The in vitro results show that oocyte maturation can be modulated by the combined actions of several hormones. Such steroid-insulin interactions may also be relevant to understanding the control of oocyte maturation in amphibians and other vertebrates, including mammals, under physiological conditions in vivo.


Endocrinology ◽  
2020 ◽  
Vol 161 (6) ◽  
Author(s):  
Qifeng Zhang ◽  
Ding Ye ◽  
Houpeng Wang ◽  
Yaqing Wang ◽  
Wei Hu ◽  
...  

Abstract Androgen is essential for male development and cortisol is involved in reproduction in fishes. However, the in vivo roles of cortisol and specific androgens such as 11-ketotestosterone (11-KT) in reproductive development need to be described with genetic models. Zebrafish cyp11c1 encodes 11β-hydroxylase, which is essential for the biosynthesis of 11-KT and cortisol. In this study, we generated a zebrafish mutant of cyp11c1 (cyp11c1-/-) and utilized it to clarify the roles of 11-KT and cortisol in sexual development and reproduction. The cyp11c1-/- fish had smaller genital papilla and exhibited defective natural mating but possessed mature gametes and were found at a sex ratio comparable to the wildtype control. The cyp11c1-/- males showed delayed and prolonged juvenile ovary-to-testis transition and displayed defective spermatogenesis at adult stage, which could be rescued by treatment with 11-ketoandrostenedione (11-KA) at certain stages. Specifically, during testis development of cyp11c1-/- males, the expression of insl3, cyp17a1, and amh was significantly decreased, suggesting that 11-KT is essential for the development and function of Leydig cells and Sertoli cells. Further, spermatogenesis-related dmrt1 was subsequently downregulated, leading to insufficient spermatogenesis. The cyp11c1-/- females showed a reduction in egg spawning and a failure of in vitro germinal vesicle breakdown, which could be partially rescued by cortisol treatment. Taken together, our study reveals that zebrafish Cyp11c1 is not required for definite sex differentiation but is essential for juvenile ovary-to-testis transition, Leydig cell development, and spermatogenesis in males through 11-KT, and it is also involved in oocyte maturation and ovulation in females through cortisol.


Zygote ◽  
1998 ◽  
Vol 6 (4) ◽  
pp. 299-309 ◽  
Author(s):  
Vlastimil Sršeň ◽  
Jaroslav Kalous ◽  
Eva Nagyova ◽  
Peter šutovský ◽  
W. Allan King ◽  
...  

The meiotic competence and meiosis resumption of Blue fox (Alopex lagopus) oocytes from anoestrous animals were followed. Oocyte–cumulus complexes (OCC) were cultured in modified TC 199 medium with or without FSH, recombinant bovine somatotrophin (bST) and okadaic acid (OA). The results showed that oocytes less than 100 μm in diameter did not achieve germinal vesicle breakdown (GFBD) by 72 h of culture, which indicates their meiotic incompetence. Oocytes larger than 100 µm in diameter underwent GVBD after 48 h of culture (27%) and reached metaphase II (MII) after 72 and 96 h (20% and 27%) in control medium. Both bST and OA accelerated resumption of meiosis (bST: 55% GVBD and 42% MII after 48 h; OA: 66% GVBD after 18 h). In contrast, FSH significantly reduced meiosis resumption (only 3% GVBD and MII after 72 h) and induced changes in the shape of cumulus granulosa (CG) cells and F-actin assembly typical for cumulus expansion. However, the innermost layers of CG cells (corona radiata) remained connected with the oocyte via gap junctions until the end of culture. Cumuli of oocytes cultured in control, bST-supplemented or OA-supplemented medium did not expand (changes in cell shape and F-actin redistribution did not occur). Moreover, especially in media with bST and OA an increased detachment and rapid disconnection of their gap junctions with the oocyte were observed. These results suggest that under in vitro conditions FSH stimulates expansion of the CG cells and the attached membrana granulosa cells but in contrast it secures heterologous gap junctions between cytoplasmic processes of the corona radiata cells and oolemma during 3 days of culture. Thus, in agreement with the in vivo situation in which Canidae oocytes are ovulated in the GV stage, the cumulus, mainly corona radiata cells, controls resumption of meiosis in Blue fox oocytes under in vitro conditions also.


Sign in / Sign up

Export Citation Format

Share Document