Age-related degradation of mouse cortical bone: implications for the α-klotho gene responsible for bone mechanical integrity in a series of nanoindentation experiments

Author(s):  
N. Maruyama ◽  
Y. Shibata ◽  
A. Mochizuki ◽  
T. Miyazaki ◽  
T. Inoue ◽  
...  
1985 ◽  
Vol 18 (7) ◽  
pp. 521-522 ◽  
Author(s):  
W. Bonfield ◽  
J.C. Behiri ◽  
B. Cullen

Bone ◽  
2009 ◽  
Vol 44 ◽  
pp. S22
Author(s):  
K.K. Nishiyama ◽  
H.M. Macdonald ◽  
H.R. Buie ◽  
D.A. Hanley ◽  
S.K. Boyd

2000 ◽  
Vol 5 (1) ◽  
pp. 4-9 ◽  
Author(s):  
Jun Iwamoto ◽  
Tsuyoshi Takeda ◽  
Shoichi Ichimura ◽  
Yasunori Tsukimura ◽  
Yoshiaki Toyama

2001 ◽  
Vol 168 (2) ◽  
pp. 347-351 ◽  
Author(s):  
T Yamashita ◽  
I Sekiya ◽  
N Kawaguchi ◽  
K Kashimada ◽  
A Nifuji ◽  
...  

Unloading induces bone loss as seen in experimental animals as well as in space flight or in bed-ridden conditions; however, the mechanisms involved in this phenomenon are not fully understood. Klotho mutant mice exhibit osteopetrosis in the metaphyseal regions indicating that the klotho gene product is involved in the regulation of bone metabolism. To examine whether the klotho gene product is involved in the unloading-induced bone loss, the response of the osteopetrotic cancellous bones in these mice was investigated. Sciatic nerve resection was conducted using klotho mutant (kl/kl) and control heterozygous mice (+/kl) and its effect on bone was examined by micro-computed tomography (microCT). As reported previously for wild-type mice (+/+), about 30% bone loss was induced in heterozygous mice (+/kl) by unloading due to neurectomy within 30 days of the surgery. By contrast, kl/kl mice were resistant against bone loss induced by unloading after neurectomy. Unloading due to neurectomy also induced a small but significant bone loss in the cortical bone of the mid-shaft of the femur in the heterozygous mice; no reduction in the cortical bone was observed in kl/kl mice. These results indicate that klotho mutant mice are resistant against bone loss induced by unloading due to neurectomy in both cortical and trabecular bone and indicate that klotho is one of the molecules involved in the loss of bone by unloading.


Author(s):  
Yener N. Yeni ◽  
Roger R. Zauel

Cortical bone tissue quality is imperative in maintaining the mechanical competence of whole bones, particularly at sites of overuse and age-related fragility fractures where a considerable cortical bone component is present. (Note that cortical bone tissue is more than 80% of the bone in the body [1].)


2015 ◽  
Vol 15 (05) ◽  
pp. 1550074 ◽  
Author(s):  
MICHAEL CHITTENDEN ◽  
AHMAD RAEISI NAJAFI ◽  
JUN LI ◽  
IWONA JASIUK

Composition-structure-property relations of bone provide fundamental understanding of bone quality. The objective of this paper was to investigate age dependent changes in the composition, structure and mechanical properties of porcine femoral cortical bone at mid-diaphysis region from six age groups (1, 3.5, 6, 12, 30, 48 months). This study was motivated by the fact that limited data is available in the literature on young porcine cortical bone. Nanoindentation technique with Berkovich fluid cell tip was employed to measure the elastic modulus and hardness. Individual lamellae were indented in the longitudinal direction of bone in different microstructural components (osteonal, interstitial and plexiform bone). A grid of indentations was also made on one bone sample to obtain spatial variations in the elastic modulus and hardness. Ash and water content tests were performed to measure water, organic and mineral contents of bone as a function of age. Finally, high resolution micro-computed tomography was used to measure porosity and visualize three-dimensional void structures. We found that the elastic modulus and hardness of bone increased with age but at different rates in each microstructural component. The mineral content increased correspondingly with age while the porosity decreased. The obtained structure, composition, and mechanical properties data give new insights on the age related changes in young cortical bone and can serve as inputs for and validation of multiscale models of bone.


Sign in / Sign up

Export Citation Format

Share Document