NANOINDENTATION AND ASH CONTENT STUDY OF AGE DEPENDENT CHANGES IN PORCINE CORTICAL BONE

2015 ◽  
Vol 15 (05) ◽  
pp. 1550074 ◽  
Author(s):  
MICHAEL CHITTENDEN ◽  
AHMAD RAEISI NAJAFI ◽  
JUN LI ◽  
IWONA JASIUK

Composition-structure-property relations of bone provide fundamental understanding of bone quality. The objective of this paper was to investigate age dependent changes in the composition, structure and mechanical properties of porcine femoral cortical bone at mid-diaphysis region from six age groups (1, 3.5, 6, 12, 30, 48 months). This study was motivated by the fact that limited data is available in the literature on young porcine cortical bone. Nanoindentation technique with Berkovich fluid cell tip was employed to measure the elastic modulus and hardness. Individual lamellae were indented in the longitudinal direction of bone in different microstructural components (osteonal, interstitial and plexiform bone). A grid of indentations was also made on one bone sample to obtain spatial variations in the elastic modulus and hardness. Ash and water content tests were performed to measure water, organic and mineral contents of bone as a function of age. Finally, high resolution micro-computed tomography was used to measure porosity and visualize three-dimensional void structures. We found that the elastic modulus and hardness of bone increased with age but at different rates in each microstructural component. The mineral content increased correspondingly with age while the porosity decreased. The obtained structure, composition, and mechanical properties data give new insights on the age related changes in young cortical bone and can serve as inputs for and validation of multiscale models of bone.

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Changqi Luo ◽  
Junyi Liao ◽  
Zhenglin Zhu ◽  
Xiaoyu Wang ◽  
Xiao Lin ◽  
...  

The effect of age on mechanical behavior and microstructure anisotropy of bone is often ignored by researchers engaged in the study of biomechanics. The objective of our study was to determine the variations in mechanical properties of canine femoral cortical bone with age and the mechanical anisotropy between the longitudinal and transverse directions. Twelve beagles divided into three age groups (6, 12, and 36 months) were sacrificed and all femurs were extracted. The longitudinal and transverse samples of cortical bone were harvested from three regions of diaphysis (proximal, central, and distal). A nanoindentation technique was used for simultaneously measuring force and displacement of a diamond tip pressed 2000nm into the hydrated bone tissue. An elastic modulus was calculated from the unloading curve with an assumed Poisson ratio of 0.3, while hardness was defined as the maximal force divided by the corresponding contact area. The mechanical properties of cortical bone were determined from 852 indents on two orthogonal cross-sectional surfaces. Mean elastic modulus ranged from 7.56±0.32 GPa up to 21.56±2.35 GPa, while mean hardness ranged from 0.28±0.057 GPa up to 0.84±0.072 GPa. Mechanical properties of canine femoral cortical bone tended to increase with age, but the magnitudes of these increase for each region might be different. The longitudinal mechanical properties were significantly higher than that of transverse direction (P<0.01). A significant anisotropy was found in the mechanical properties while there was no significant correlation between the two orthogonal directions in each age group (r2<0.3). Beyond that, the longitudinal mechanical properties of the distal region in each age group were lower than the proximal and central regions. Hence, mechanical properties in nanostructure of bone tissue must differ mainly among age, sample direction, anatomical sites, and individuals. These results may help a number of researchers develop more accurate constitutive micromechanics models of bone tissue in future studies.


1988 ◽  
Vol 254 (6) ◽  
pp. H1091-H1098
Author(s):  
P. W. Achterberg ◽  
A. S. Nieukoop ◽  
B. Schoutsen ◽  
J. W. de Jong

Age-dependent differences in the effects of ischemia and reperfusion on ATP breakdown were studied in perfused adult and newborn (10 days old) rat hearts. No-flow ischemia (15 min at 37, 30, or 23 degrees C) was applied and reperfusion (20 min at 37 degrees C) was studied after ischemia at 23 or 37 degrees C. Hypothermia during ischemia protected both age groups to a similar degree against ATP decline, which was linear with temperature. Reperfusion after normothermic ischemia resulted in higher ATP levels in newborn hearts with less release of ATP catabolites (purines). We found no age-related differences in lactate release but large differences in purine release. During normoxia, adult hearts released mainly urate (80% of total) and inosine (7%), but newborns released hypoxanthine (64%) and inosine (15%). Early during reperfusion adult hearts released inosine (58%) and adenosine (18%), but newborns released inosine (53%) and hypoxanthine (38%). These data suggested a lower activity of the potentially deleterious enzyme xanthine oxidoreductase in newborn hearts, which was confirmed by enzymatic assay. ATP-catabolite release during reperfusion was less in newborn than adult hearts, and this coincided with lower xanthine oxidase activity.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Man Lei ◽  
Fa-ning Dang ◽  
Haibin Xue ◽  
Mingming He

In order to study the mechanical properties of granite at the micro- and nanoscale, the load-displacement curve, residual indentation information, and component information of the quartz, feldspar, and mica in granite were obtained using a nanoindentation test, a scanning electron microscope (SEM), and X-ray diffraction (XRD). The elastic modulus and the hardness of each component of the granite were obtained through statistical analysis. Treating rock as a composite material, the relation between the macro- and microscopic mechanical properties of rock was established through the theory of micromechanical homogenization. The transition from micromechanical parameters to macromechanical parameters was realized. The equivalent elastic modulus and Poisson’s ratio of the granite were obtained by the Self-consistent method, the Dilute method, and the Mori-Tanaka method. Compared with the elastic modulus and the Poisson ratio of granites measured by a uniaxial compression test and the available data, the applicability of the three methods were analyzed. The results show that the elastic modulus and hardness of the quartz in the granite is the largest, the feldspar is the second, the mica is the smallest. The main mineral contents in granite were analyzed using the semiquantitative method by XRD and the rock slice identification test. The elastic modulus and the Poisson ratio of granite calculated by three linear homogenization methods are consistent with those of the uniaxial compression test. After comparing the calculation results of the three methods, it is found that the Mori-Tanaka method is more suitable for studying the mechanical properties of rock materials. This method has an important theoretical significance and practical value for studying the quantitative relationship between macro- and micromechanical indexes of brittle materials. The research results provide a new method and an important reference for studying the macro-, micro-, and nanomechanical properties of rock.


2004 ◽  
Vol 844 ◽  
Author(s):  
Amanpreet K. Bembey ◽  
Vanessa Koonjul ◽  
Andrew J. Bushby ◽  
Virginia L. Ferguson ◽  
Alan Boyde

ABSTRACTCortical bone is an anisotropic material, and its mechanical properties are determined by its composition as well as its microstructure. Mechanical properties of bone are a consequence of the proportions of, and the interactions between, mineral, collagen and water. Mid-shaft palmar cortical tissue from the equine third metacarpal bone is relatively dense and uniform with low porosity. The mainly primary osteons are aligned to within a few degrees of the long axis of the bone. Beams of compact cortical bone were prepared to examine effects of dehydration and embedding and to study contribution of collagen and mineral to nano-scale material properties. Five beams were tested: untreated (hydrated); 100% ethanol (dehydrated); or embedded in poly-methylmethacrylate (PMMA) for one normal, one decalcified, and one deproteinated bone sample. Elastic modulus was obtained by nanoindentation using spherical indenters, with the loading direction transverse [1] and longitudinal to the bone axis. By selectively removing water, mineral and organic components from the composite, insights into the ultrastructure of the tissue can be gained from the corresponding changes in the experimentally determined elastic moduli.


Author(s):  
Alfredo Bravo-Sánchez ◽  
Pablo Abián ◽  
Filipa Sousa ◽  
Fernando Jimenez ◽  
Javier Abián-Vicén

Regular sport practice could prevent age-related changes in tendinous tissues. The purpose of the study was to investigate the effect of regular badminton practice on patellar and Achilles tendon mechanical properties in senior competitive badminton players (>35 years old) and to compare the results with physically active people matched by age. One hundred ninety-two badminton players and 193 physically active people were divided by age into four groups, between 35 and 44 (U45), between 45 and 54 (U55), between 55 and 64 (U65), and over 65 (O65) years old. A LogiqS8 transducer in elastography mode and a MyotonPRO myotonometer were used to assess patellar and Achilles mechanical properties. Achilles tendon stiffness was higher in the control group than the badminton players for the U45, U55, and O65 age groups (p < .01). Also, the elastography index was higher in the control group than the badminton players for the U45, U55, U65, and O65 age groups (p < .05). In conclusion, regular badminton practice could prevent the decline in mechanical properties of the patellar and Achilles tendons.


2004 ◽  
Vol 841 ◽  
Author(s):  
B. Kavukcuoglu ◽  
C. West ◽  
D. T. Denhardt ◽  
A. B. Mann

ABSTRACTOsteopontin (OPN), a phosphorylated glycoprotein, is among the most abundant non-collageneous bone matrix proteins produced by osteoblasts and osteoclasts. OPN has been implicated in bone formation, resorption and remodeling. However, previous studies have presented contradictory results regarding the effect of OPN on the mechanics and microstructure of bone. This study has used nanoindentation to identify local variations in elastic modulus and hardness of OPN deficient (OPN -/-) and wild-type control (OPN+/+) mouse bones. Specifically, the study has looked at changes in the mechanical properties of OPN-/- and OPN+/+ mouse bones with the mouse's age. Cortical sections of femurs from different age groups ranging from 3 weeks to 58 weeks were tested and compared. The results suggest that there are large, abrupt variations in mechanical properties across the femur's radial section for 3-week-old mouse bone. The hardness (H) drops significantly towards the inner and outer sections so the cortical bone has a mean H=3.66 GPa with a standard deviation of 2.44 GPa. In contrast, the hardness of the 58-week-old mouse bone had a standard deviation of 0.35 GPa and a mean H=1.45 GPa. The hardness across the radial axis of the 58-week-old bone was found to be quite uniform. The elastic modulus showed similar variations to the hardness with respect to age and position on the bone. We conclude that the mechanical properties of the mouse bones decrease substantially with maturity, and statistically the hardness and elastic modulus are more uniform in mature bones than young ones. Surprisingly we found a similar variation in both OPN-/- and OPN+/+ bones, with no statistically significant difference in the mechanical properties of the OPN -/- and OPN+/+ bones. The results for OPN-/- and OPN+/+ mouse bones are particularly important as control of OPN activity has been postulated as a potential treatment for bone pathologies that exhibit a change in the bone mineralization, such as osteoporosis, osteopetrosis and Paget's disease. Understanding the effects of OPN on bone mechanics is a vital step in the development of these new treatments.


2004 ◽  
Vol 844 ◽  
Author(s):  
B. Kavukcuoglu ◽  
C. West ◽  
D.T. Denhardt ◽  
A. B. Mann

ABSTRACTOsteopontin (OPN), a phosphorylated glycoprotein, is among the most abundant non-collageneous bone matrix proteins produced by osteoblasts and osteoclasts. OPN has been implicated in bone formation, resorption and remodeling. However, previous studies have presented contradictory results regarding the effect of OPN on the mechanics and microstructure of bone. This study has used nanoindentation to identify local variations in elastic modulus and hardness of OPN deficient (OPN -/-) and wild-type control (OPN+/+) mouse bones. Specifically, the study has looked at changes in the mechanical properties of OPN-/- and OPN+/+ mouse bones with the mouse's age. Cortical sections of femurs from different age groups ranging from 3 weeks to 58 weeks were tested and compared. The results suggest that there are large, abrupt variations in mechanical properties across the femur's radial section for 3-week-old mouse bone. The hardness (H) drops significantly towards the inner and outer sections so the cortical bone has a mean H=3.66 GPa with a standard deviation of 2.44 GPa. In contrast, the hardness of the 58-week-old mouse bone had a standard deviation of 0.35 GPa and a mean H=1.45 GPa. The hardness across the radial axis of the 58-week-old bone was found to be quite uniform. The elastic modulus showed similar variations to the hardness with respect to age and position on the bone. We conclude that the mechanical properties of the mouse bones decrease substantially with maturity, and statistically the hardness and elastic modulus are more uniform in mature bones than young ones. Surprisingly we found a similar variation in both OPN-/- and OPN+/+ bones, with no statistically significant difference in the mechanical properties of the OPN -/- and OPN+/+ bones. The results for OPN-/- and OPN+/+ mouse bones are particularly important as control of OPN activity has been postulated as a potential treatment for bone pathologies that exhibit a change in the bone mineralization, such as osteoporosis, osteopetrosis and Paget's disease. Understanding the effects of OPN on bone mechanics is a vital step in the development of these new treatments.


2014 ◽  
Vol 29 (10) ◽  
pp. 1135-1143 ◽  
Author(s):  
Sebastián Jaramillo Isaza ◽  
Pierre-Emmanuel Mazeran ◽  
Karim El Kirat ◽  
Marie-Christine Ho Ba Tho

Abstract


2004 ◽  
Vol 841 ◽  
Author(s):  
Amanpreet K. Bembey ◽  
Vanessa Koonjul ◽  
Andrew J. Bushby ◽  
Virginia L. Ferguson ◽  
Alan Boyde

ABSTRACTCortical bone is an anisotropic material, and its mechanical properties are determined by its composition as well as its microstructure. Mechanical properties of bone are a consequence of the proportions of, and the interactions between, mineral, collagen and water. Mid-shaft palmar cortical tissue from the equine third metacarpal bone is relatively dense and uniform with low porosity. The mainly primary osteons are aligned to within a few degrees of the long axis of the bone. Beams of compact cortical bone were prepared to examine effects of dehydration and embedding and to study contribution of collagen and mineral to nano-scale material properties. Five beams were tested: untreated (hydrated); 100% ethanol (dehydrated); or embedded in poly-methylmethacrylate (PMMA) for one normal, one decalcified, and one deproteinated bone sample. Elastic modulus was obtained by nanoindentation using spherical indenters, with the loading direction transverse [1] and longitudinal to the bone axis. By selectively removing water, mineral and organic components from the composite, insights into the ultrastructure of the tissue can be gained from the corresponding changes in the experimentally determined elastic moduli.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chongze Hu ◽  
Yanwen Li ◽  
Zhiyang Yu ◽  
Jian Luo

AbstractComputing the grain boundary (GB) counterparts to bulk phase diagrams represents an emerging research direction. Using a classical embrittlement model system Ga-doped Al alloy, this study demonstrates the feasibility of computing temperature- and composition-dependent GB diagrams to represent not only equilibrium thermodynamic and structural characters, but also mechanical properties. Specifically, hybrid Monte Carlo and molecular dynamics (MC/MD) simulations are used to obtain the equilibrium GB structure as a function of temperature and composition. Simulated GB structures are validated by aberration-corrected scanning transmission electron microscopy. Subsequently, MD tensile tests are performed on the simulated equilibrium GB structures. GB diagrams are computed for not only GB adsorption and structural disorder, but also interfacial structural and chemical widths, MD ultimate tensile strength, and MD tensile toughness. This study suggests a research direction to investigate GB composition–structure–property relationships via computing GB diagrams of thermodynamic, structural, and mechanical (or potentially other) properties.


Sign in / Sign up

Export Citation Format

Share Document