scholarly journals Determination of the Degree of Homogeneity for n Ge Crystals by Measurements of Magnetoresistance in Classically Weak Magnetic Fields

2015 ◽  
Vol 16 (3) ◽  
pp. 469-474
Author(s):  
G. P. Gaidar ◽  
P. I. Baranskii

In a wide range of values of the resistivity 0.0212 £ r £ 35 Ohm×cm for n‑Ge crystals with known crystallographic orientation the ratio , which was predicted by the theory, was experimentally confirmed. The experimentally measured deviations from the relationship , which are associated with the heterogeneity of the crystals, it is proposed to use for qualitative assessment of the degree of heterogeneity in the spatial distribution of dopants in the samples.

2011 ◽  
Vol 28 (2) ◽  
pp. 151 ◽  
Author(s):  
R. A Ghani ◽  
T. L Goh ◽  
A. M Hariri ◽  
Y. N Baizura

The basic friction angle, Φb for artificially sawn discontinuity planes for fresh granite, as determined by tilt testing, has an average value of 30º. For the natural rough discontinuity surfaces, a wide range of values have been determined for the peak friction angle, Φpeak ranging from 47º to a maximum value of 80º, depending on the joint roughness coefficient (JRC). The average values of the friction angles for the different degrees of roughness were as follows: JRC 2–4 = 58°; JRC 6–8 = 60°; JRC 8–10 = 47°; JRC 12–14 = 60°; JRC 14–16 = 71° ; JRC 18–20 = 80°.


Author(s):  
A.N. Chistov ◽  
M.Yu. Kladov ◽  
I.B. Pronin ◽  
A.S. Smirnov

In developing new composite materials and solving heat transfer problems, the thermal conductivity is an important characteristic that must be reliably determined. This often requires samples of the smallest dimensions, which is relevant for the production of pilot batches of material, as well as if they are taken directly from the product, when the amount of material is very limited. Most common methods for determining thermal conductivity require samples of relatively large sizes. To measure thermal conductivity on small-sized samples, an upgraded benchtop instrument is introduced. The instrument uses the relative method of longitudinal heat flux, which consists in a comparative measurement of a sample located between the heater and the standard in a stationary thermal mode. This paper presents the instrument design details, the requirements for the samples, explains the calibration features and the measurement procedure. The measurement results in a number of composite materials, as well as in materials with well-studied properties are analyzed. Findings show that the error of determining the thermal conductivity on a modernized instrument does not exceed several percent.


2021 ◽  
Vol 63 (12) ◽  
pp. 2073
Author(s):  
В.И. Митюк ◽  
Г.С. Римский ◽  
К.И. Янушкевич ◽  
В.В. Коледов ◽  
А.В. Маширов ◽  
...  

Experimental studies of the magnetic and structural properties of solid solutions of the Mn1-xCoxNiGe system in a wide range of Co concentrations (0.05≤ x≤ 0.8), temperatures (5 K≤ x≤600 K) and magnetic fields (0.016 T≤ x≤ 13.5 T) have revealed a number of nontrivial magnetic and magnetocaloric features of this system. The latter include: 1) a change in the nature of magnetic phase transitions from magnetostructural transitions of the 1st order paramagnetism-antiferromagnetism (0.05≤ x≤ 0.15) to isostructural transitions of the 2nd order paramagnetism-ferromagnetism (0.15≤ x≤0.8) with a change in the concentration of Co ; 2) anomalous behavior of low-temperature regions of magnetization in weak magnetic fields; 3) a change in the saturation magnetization and the appearance of irreversible magnetic field-induced transitions at helium temperatures in strong magnetic fields.


2003 ◽  
Vol 76 (4) ◽  
pp. 832-845 ◽  
Author(s):  
William L. Hergenrother ◽  
Ashley S. Hilton

Abstract A technique is described allowing a relatively simple determination of χ as a function of vr from swelling in heptane. A good measure of the true νe of the cured elastomer at all values of vr was demonstrated by substituting this relationship for χ in the Flory-Rehner (F-R) equation. The relationship was established over a wide range of vr values by using samples that had the νe of the cured elastomer determined by tensile retraction (TR). Applying this function to samples treated using the thiol probe method of Campbell gave an improved measure of the types of crosslinks present in sulfur-cured stocks. An identical equation describing χ as a function of vr in heptane was obtained with NR, EPDM and SBR containing up to a 0.31 volume fraction of carbon black (CB) and other fillers. The presence of up to 10 % of clay, talc, silica, resins or metal oxides in the CB had no noticeable effect on the relationship measured. However, when the filler contained about 50% silica a distinctly different slope in the relationship was found. The percent S1, S2 and Sx distribution measured was contrasted between measurements made by 13C NMR, swelling with χ = constant or χ as a function of vr.


1970 ◽  
Vol 92 (3) ◽  
pp. 405-410
Author(s):  
H. S. Yu ◽  
E. M. Sparrow

An analysis is made of the rate of the mass flow through a vacuum seal separating two rarefied gas environments. The determination of the mass throughflow characteristics involves the formulation and solution of a coupled system of six integral equations. The formulation is performed using the methods of kinetic theory. Numerical solutions are carried out for a wide range of values of the seal geometrical parameter. Mass flow results evaluated from these solutions are presented graphically. In addition, representative distributions of the mass fluxes at the participating surfaces are given.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4191
Author(s):  
Pavol Lipovský ◽  
Katarína Draganová ◽  
Jozef Novotňák ◽  
Zoltán Szőke ◽  
Martin Fiľko

Unmanned aerial vehicles (UAVs) are used nowadays in a wide range of applications, including monitoring, mapping, or surveying tasks, involving magnetic field mapping, mainly for geological and geophysical purposes. However, thanks to the integration of ultrasound-aided navigation used for indoor UAV flight planning and development in sensorics, the acquired magnetic field images can be further used, for example, to enhance indoor UAV navigation based on the physical quantities of the image or for the identification of risk areas in manufacturing or industrial halls, where workers can be exposed to high values of electromagnetic fields. The knowledge of the spatial distribution of magnetic fields can also provide valuable information from the perspective of the technical cleanliness. This paper presents results achieved with the original fluxgate magnetometer developed and specially modified for integration on the UAV. Since the magnetometer had a wider frequency range of measurement, up to 250 Hz, the DC (Direct Current) magnetic field and low frequency industrial components could be evaluated. From the obtained data, 3D magnetic field images using spline interpolation algorithms written in the Python programming language were created. The visualization of the measured magnetic field in the 3D plots offer an innovative view of the spatial distribution of the magnetic field in the area of interest.


2012 ◽  
Vol 27 (3) ◽  
pp. 254-259
Author(s):  
Jugoslav Nikolic ◽  
Djordje Nikolic

The aim of this paper is a creation of the spatial distribution of the corresponding coefficients for the indirect determination of global radiation using all direct measurements data of this shortwave radiation balance component in Serbia in the standard climate period (1961-1990). Based on the global radiation direct measurements data recorded in the past and routine measurements/observations of cloudiness and sunshine duration, the spatial distribution coefficients maps required for calculation of global radiation were produced on the basis of sunshine/cloudiness in an arbitrary point on the territory of Serbia. Besides, a specific verification of the proposed empirical formula was performed. This paper contributes to a wide range of practical applications as direct measurements of global radiation are relatively rare, and are not carried out in Serbia today. Significant application is possible in the domain of renewable energy sources. The development of method for determination of the global radiation has an importance from the aspect of the environmental protection; however it also has an economic importance through applications in numerous commercial projects, as it does not require special measurements or additional financial investments.


Sign in / Sign up

Export Citation Format

Share Document