scholarly journals Ignition and Self-Supporting Burning of Gas-Air Mixtures with Hydrogen Admixtures on Platinum Wire

2017 ◽  
Vol 18 (4) ◽  
pp. 449-454
Author(s):  
V. V. Kalinchak ◽  
A. S. Chernenko ◽  
A. N. Sofronkov ◽  
A. V. Fedorenko

The proposed work describes analytical identification of hydrogen admixture concentration and catalyst temperatures limit values beyond which catalytic flameless steady combustion of gas-air mixtures at ambient temperature at platinum wires is observed. The effect of gas-air slip velocity upon considered values is shown. Initial platinum wire preheating temperatures required for catalytic ignition are determined.

2011 ◽  
Vol 133 (9) ◽  
Author(s):  
Vaibhav Kumar Sahu ◽  
Vasudevan Raghavan ◽  
Daniel N. Pope ◽  
George Gogos

A numerical study of steady burning of spherical ethanol particles in a spray environment is presented. A spray environment is modeled as a high temperature oxidizer stream where the major products of combustion such as carbon dioxide and water vapor will be present along with reduced amounts of oxygen and nitrogen. The numerical model, which employs variable thermophysical properties, a global single-step reaction mechanism, and an optically thin radiation model, has been first validated against published experimental results for quasi-steady combustion of spherical ethanol particles. The validated model has been employed to predict the burning behavior of the ethanol particle in high temperature modified oxidizer environment. Results show that based on the amount of oxygen present in the oxidizer the burning rate constant is affected. The ambient temperature affects the burning rate constant only after a sufficient decrease in the oxygen content occurs. In pure air stream, ambient temperature variation does not affect the evaporation constant. Results in terms of burning rates, maximum temperature around the particle, and the evaporation rate constants are presented for all the cases. The variation of normalized Damköhler number is also presented to show the cases where combustion or pure evaporation would occur.


Author(s):  
S.W. French ◽  
N.C. Benson ◽  
C. Davis-Scibienski

Previous SEM studies of liver cytoskeletal elements have encountered technical difficulties such as variable metal coating and heat damage which occurs during metal deposition. The majority of studies involving evaluation of the cell cytoskeleton have been limited to cells which could be isolated, maintained in culture as a monolayer and thus easily extracted. Detergent extraction of excised tissue by immersion has often been unsatisfactory beyond the depth of several cells. These disadvantages have been avoided in the present study. Whole C3H mouse livers were perfused in situ with 0.5% Triton X-100 in a modified Jahn's buffer including protease inhibitors. Perfusion was continued for 1 to 2 hours at ambient temperature. The liver was then perfused with a 2% buffered gluteraldehyde solution. Liver samples including spontaneous tumors were then maintained in buffered gluteraldehyde for 2 hours. Samples were processed for SEM and TEM using the modified thicarbohydrazide procedure of Malich and Wilson, cryofractured, and critical point dried (CPD). Some samples were mechanically fractured after CPD.


Author(s):  
S. Mahajan

The evolution of dislocation channels in irradiated metals during deformation can be envisaged to occur in three stages: (i) formation of embryonic cluster free regions, (ii) growth of these regions into microscopically observable channels and (iii) termination of their growth due to the accumulation of dislocation damage. The first two stages are particularly intriguing, and we have attempted to follow the early stages of channel formation in polycrystalline molybdenum, irradiated to 5×1019 n. cm−2 (E > 1 Mev) at the reactor ambient temperature (∼ 60°C), using transmission electron microscopy. The irradiated samples were strained, at room temperature, up to the macroscopic yield point.Figure 1 illustrates the early stages of channel formation. The observations suggest that the cluster free regions, such as A, B and C, form in isolated packets, which could subsequently link-up to evolve a channel.


Author(s):  
Robert C. Rau

Previous work has shown that post-irradiation annealing, at temperatures near 1100°C, produces resolvable dislocation loops in tungsten irradiated to fast (E > 1 MeV) neutron fluences of about 4 x 1019 n/cm2 or greater. To crystallographically characterize these loops, tilting experiments were carried out in the electron microscope on a polycrystalline specimen which had been irradiated to 1.5 × 1021 n/cm2 at reactor ambient temperature (∼ 70°C), and subseouently annealed for 315 hours at 1100°C. This treatment produced large loops averaging 1000 Å in diameter, as shown in the micrographs of Fig. 1. The orientation of this grain was near (001), and tilting was carried out about axes near [100], [10] and [110].


Author(s):  
J. J. Laidler

The presence of three-dimensional voids in quenched metals has long been suspected, and voids have indeed been observed directly in a number of metals. These include aluminum, platinum, and copper, silver and gold. Attempts at the production of observable quenched-in defects in nickel have been generally unsuccessful, so the present work was initiated in order to establish the conditions under which such defects may be formed.Electron beam zone-melted polycrystalline nickel foils, 99.997% pure, were quenched from 1420°C in an evacuated chamber into a bath containing a silicone diffusion pump fluid . The pressure in the chamber at the quenching temperature was less than 10-5 Torr . With an oil quench such as this, the cooling rate is approximately 5,000°C/second above 400°C; below 400°C, the cooling curve has a long tail. Therefore, the quenched specimens are aged in place for several seconds at a temperature which continuously approaches the ambient temperature of the system.


Author(s):  
I. G. Shubin ◽  
A. A. Kurkin

During manufacturing nuts of increased height, a problem of obtaining correct cylindrical form of the hole for thread and overall geometrical parameters arises. To solve the problem it is necessary to know regularity of the blank forming process. Results of the study of a technological process of high hexahedral nuts forming presented. The nuts were M18 of 22 mm height, M16 of 19 mm height and M12 of normal height 10 mm according to GOST 5915–70, accuracy class B, steel grade 10 according to GOST 10702–78. The volumetric stamping was accomplished at the five-position automatic presses of АА1822 type. It was determined, that unevenness of the metal flow in the process of plastic deformation of blanks of increased height nuts was caused by different stress conditions by their sections. To simulate the mode of deformation, the program complex QForm-3D was chosen. The complex ensured to forecast with necessary accuracy the metal flow in a blank, as well as to define the deformation force and arising stress in the working instrument. The simulation showed the presence of regularity between preliminary formed buffle and deviation of dimensions and form of a blank wall after its finishing piercing, which can be expressed by a nonlinear dependence. The limit values of the relative height of the buffle С/D = 0.56–0.588 defined, exceeding which will result in rejection of the finished product. Accounting the limit values of the relative height of the buffle will enable to correct a mode of technological operations and technological instruments at stamping of high hexahedral nuts.


2019 ◽  
Vol 7 (1) ◽  
pp. 387-396 ◽  
Author(s):  
Mohmmadraiyan M. Munshi ◽  
Ashok R. Patel ◽  
Gunamani Deheri
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document