scholarly journals Impurity photoionization cross-section and intersubband optical absorption coefficient in multilayer spherical quantum dots

2021 ◽  
Vol 22 (4) ◽  
pp. 630-637
Author(s):  
Volodymyr Holovatsky ◽  
Maryna Chubrei ◽  
Oxana Yurchenko

Energy spectrum, wave functions and binding energies of the electron to the donor impurity ion located in the center of a multilayer spherical quantum dot (MSQD) consisting of a core and two spherical shells were studied within the effective mass approximation. Based on the exact wave functions of the electron expressed in terms of Coulomb functions of the first and second kind, the spectral dependences of the photoionization cross section of the impurity (PCS) and the intersubband optical absorption coefficient (OAC) for various geometric dimensions of the nanostructure were calculated. It is shown that the decrease in the width of the external potential well changes the localization of the electron in the nanosystem which significantly affects the binding energy of the electron with the impurity, photoionization cross section and interband absorption coefficient. The position of the PCS peak associated with the quantum transition of an electron from the ground state to the 1p0 state shifts to the region of higher energies, and its height decreases. At the same time, the height of PCS peaks associated with quantum transitions to higher excited states (2p0, 3p0) increases.The presence of impurities and changes in the MSQD size significantly affect the intersubband absorption coefficient. Decrease of the external potential well width in the absence of impurities leads to a monotonous increase in OAC through the first excited state, and in the presence of a central impurity, absorption through states with higher energy increases.

2010 ◽  
Vol 19 (01) ◽  
pp. 131-143 ◽  
Author(s):  
G. REZAEI ◽  
M. R. K. VAHDANI ◽  
M. BARATI

Intersubband optical absorption coefficient and refractive index changes of a weakly prolate ellipsoidal quantum dot, using the compact-density matrix formalism and iterative method, are investigated. In this regard, the linear and nonlinear intersubband optical absorption coefficient and refractive index changes of a GaAs / Al x Ga 1-x As ellipsoidal quantum dot, as functions of the dot radius, ellipticity constant, stoichiometric ratio and incident light intensity are calculated. The results indicate that absorption coefficient and refractive index changes strongly depend on the light intensity, size and geometry of the dot and structure parameters such as aluminium concentration in GaAs / Al x Ga 1-x As structures.


2009 ◽  
Vol 23 (14) ◽  
pp. 3179-3186 ◽  
Author(s):  
RUI-ZHEN WANG ◽  
KANG-XIAN GUO ◽  
BIN CHEN ◽  
YUN-BAO ZHENG

The intersubband optical absorption in cylindrical quantum dot quantum well (QDQW) for different sizes of QDQW is theoretically studied. The analytical expression of the absorption coefficient is derived by using the compact density-matrix approach and the iterative method. And the numerical calculations are presented for a typical GaAs / AlGaAs QDQW. The results obtained show that the optical absorption coefficient in the QDQW can be importantly modified by size of shell well. Moreover, they also show that the optical absorption is strongly dependent on the incident optical intensity.


1987 ◽  
Vol 6 (2) ◽  
pp. 173-181 ◽  
Author(s):  
F. Borghese ◽  
P. Denti ◽  
R. Saija ◽  
G. Toscano ◽  
O. I. Sindoni

1991 ◽  
Vol 69 (3-4) ◽  
pp. 317-323 ◽  
Author(s):  
Constantinos Christofides ◽  
Andreas Mandelis ◽  
Albert Engel ◽  
Michel Bisson ◽  
Gord Harling

A photopyroelectric spectrometer with real-time and(or) self-normalization capability was used for both conventional transmission and thermal-wave spectroscopic measurements of amorphous Si thin films, deposited on crystalline Si substrates. Optical-absorption-coefficient spectra were obtained from these measurements and the superior dynamic range of the out-of-phase (quadrature) photopyroelectric signal was established as the preferred measurement method, owing to its zero-background compensation capability. An extension of a photopyroelectric theoretical model was established and successfully tested in the determination of the optical absorption coefficient and the thermal diffusivity of the sample under investigation. Instrumental sensitivity limits of βt ≈ 5 × 10−3 were demonstrated.


1996 ◽  
Vol 426 ◽  
Author(s):  
B. Pashmakov ◽  
H. Fritzsche ◽  
B. Claflin

AbstractThe electrical conductance and optical absorption coefficient of microcrystalline indium oxide (c – In2 O 3-x ) can be changed reversibly by several orders of magnitude by photoreduction and reoxidation. Photoreduction is achieved by exposure to ultraviolet light hv ≥ 3.5eV in vacuum or an inert gas. The effects are similar to those previously observed in amorphous In2 O3-x


Sign in / Sign up

Export Citation Format

Share Document