scholarly journals Evolutionary Insights into Taste Perception of the Invasive Pest Drosophila suzukii

2016 ◽  
Vol 6 (12) ◽  
pp. 4185-4196 ◽  
Author(s):  
Cristina M Crava ◽  
Sukanya Ramasamy ◽  
Lino Ometto ◽  
Gianfranco Anfora ◽  
Omar Rota-Stabelli

Abstract Chemosensory perception allows insects to interact with the environment by perceiving odorant or tastant molecules; genes encoding chemoreceptors are the molecular interface between the environment and the insect, and play a central role in mediating its chemosensory behavior. Here, we explore how the evolution of these genes in the emerging pest Drosophila suzukii correlates with the peculiar ecology of this species. We annotated approximately 130 genes coding for gustatory receptors (GRs) and divergent ionotropic receptors (dIRs) in D. suzukii and in its close relative D. biarmipes. We then analyzed the evolution, in terms of size, of each gene family as well of the molecular evolution of the genes in a 14 Drosophila species phylogenetic framework. We show that the overall evolution of GRs parallels that of dIRs not only in D. suzukii, but also in all other analyzed Drosophila. Our results reveal an unprecedented burst of gene family size in the lineage leading to the suzukii subgroup, as well as genomic changes that characterize D. suzukii, particularly duplications and strong signs of positive selection in the putative bitter-taste receptor GR59d. Expression studies of duplicate genes in D. suzukii support a spatio-temporal subfunctionalization of the duplicate isoforms. Our results suggest that D. suzukii is not characterized by gene loss, as observed in other specialist Drosophila species, but rather by a dramatic acceleration of gene gains, compatible with a highly generalist feeding behavior. Overall, our analyses provide candidate taste receptors specific for D. suzukii that may correlate with its specific behavior, and which may be tested in functional studies to ultimately enhance its control in the field.

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 229-230
Author(s):  
Dillan Henslee ◽  
Melinda Ellison ◽  
Brenda Murdoch ◽  
J Bret Taylor ◽  
Joel Yelich

Abstract The taste receptor gene family has been extensively studied in human and some genes have been linked to food preferences and addiction; however, research in foraging ruminants is limited. Identification of taste receptor genes in the sheep genome may provide insight regarding individual dietary range plant preferences. Bitter taste has been a large focus of research since Arthur Fox accidentally discovered the bitter tasting compound phenylthiocarbamide (PTC) and observed that bitter taste perception in humans is a variable trait. In theory, individuals who are sensitive to bitter taste will likely consume less bitter tasting foods, which are often antioxidant rich, and be more prone to disease and illness. The objective of this study was to examine known taste receptor genes in sheep and cattle and compare them with humans to determine similarities and differences. Type 2 taste receptors (T2R’s) are the only receptor of the taste gene family to perceive bitterness in foods. Using NCBI genome data viewer, the taste genes were identified on the human (GRCh38.p12), cattle (ARS-UCD1.2), and sheep (Oar_4.0; OORI1) genomes. All 3 species have one T2R gene cluster in common, which includes T2R genes 3, 4, 5, 38, 39, 40, 60, and 41. The span of this cluster is similar for humans (1,457,940 bp), sheep (1,541,593 bp), and cattle (1,594,610 bp). One gene in particular (T2R38) has been associated with PTC sensitivity and linked to aversion of some bitter tasting food in humans. Previous research on T2R38 identified 5 haplotypes, each expressing aversion to bitter taste differently. There is another T2R gene cluster which contains 10 annotated genes in sheep and cattle genomes; however, this region contains an additional 10 genes annotated in the human genome. Understanding genetic variation in TAS2R genes may translate to dietary preferences of sheep grazing on rangelands.


2021 ◽  
Vol 485 ◽  
pp. 118942
Author(s):  
Alberto Maceda-Veiga ◽  
Sergio Albacete ◽  
Miguel Carles-Tolrá ◽  
Juli Pujade-Villar ◽  
Jan Máca ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tao Fan ◽  
Yu-Zhen Zhao ◽  
Jing-Fang Yang ◽  
Qin-Lai Liu ◽  
Yuan Tian ◽  
...  

AbstractEukaryotic cells can expand their coding ability by using their splicing machinery, spliceosome, to process precursor mRNA (pre-mRNA) into mature messenger RNA. The mega-macromolecular spliceosome contains multiple subcomplexes, referred to as small nuclear ribonucleoproteins (snRNPs). Among these, U1 snRNP and its central component, U1-70K, are crucial for splice site recognition during early spliceosome assembly. The human U1-70K has been linked to several types of human autoimmune and neurodegenerative diseases. However, its phylogenetic relationship has been seldom reported. To this end, we carried out a systemic analysis of 95 animal U1-70K genes and compare these proteins to their yeast and plant counterparts. Analysis of their gene and protein structures, expression patterns and splicing conservation suggest that animal U1-70Ks are conserved in their molecular function, and may play essential role in cancers and juvenile development. In particular, animal U1-70Ks display unique characteristics of single copy number and a splicing isoform with truncated C-terminal, suggesting the specific role of these U1-70Ks in animal kingdom. In summary, our results provide phylogenetic overview of U1-70K gene family in vertebrates. In silico analyses conducted in this work will act as a reference for future functional studies of this crucial U1 splicing factor in animal kingdom.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 611
Author(s):  
Patamarerk Engsontia ◽  
Chutamas Satasook

The red palm weevil (Rhynchophorus ferrugineus) is a highly destructive pest of oil palm, date, and coconut in many parts of Asia, Europe, and Africa. The Food and Agriculture Organization of the United Nations has called for international collaboration to develop a multidisciplinary strategy to control this invasive pest. Previous research focused on the molecular basis of chemoreception in this species, particularly olfaction, to develop biosensors for early detection and more effective bait traps for mass trapping. However, the molecular basis of gustation, which plays an essential role in discriminating food and egg-laying sites and chemical communication in this species, is limited because its complete gustatory receptor gene family still has not been characterized. We manually annotated the gene family from the recently available genome and transcriptome data and reported 50 gustatory receptor genes encoding 65 gustatory receptors, including 7 carbon dioxide, 9 sugar, and 49 bitter receptors. This study provides a platform for future functional analysis and comparative chemosensory study. A better understanding of gustation will improve our understanding of this species’ complex chemoreception, which is an important step toward developing more effective control methods.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michelle T. Fountain ◽  
Amir Badiee ◽  
Sebastian Hemer ◽  
Alvaro Delgado ◽  
Michael Mangan ◽  
...  

Abstract Spotted wing drosophila, Drosophila suzukii, is a serious invasive pest impacting the production of multiple fruit crops, including soft and stone fruits such as strawberries, raspberries and cherries. Effective control is challenging and reliant on integrated pest management which includes the use of an ever decreasing number of approved insecticides. New means to reduce the impact of this pest that can be integrated into control strategies are urgently required. In many production regions, including the UK, soft fruit are typically grown inside tunnels clad with polyethylene based materials. These can be modified to filter specific wavebands of light. We investigated whether targeted spectral modifications to cladding materials that disrupt insect vision could reduce the incidence of D. suzukii. We present a novel approach that starts from a neuroscientific investigation of insect sensory systems and ends with infield testing of new cladding materials inspired by the biological data. We show D. suzukii are predominantly sensitive to wavelengths below 405 nm (ultraviolet) and above 565 nm (orange & red) and that targeted blocking of lower wavebands (up to 430 nm) using light restricting materials reduces pest populations up to 73% in field trials.


Appetite ◽  
2021 ◽  
pp. 105595
Author(s):  
Antonietta Robino ◽  
Natalia Rosso ◽  
Martina Guerra ◽  
Pio Corleone ◽  
Biagio Casagranda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document