scholarly journals Relationship of surface elevation changes of the Antarctic ice sheet with ice movement and subglacial water flow

2015 ◽  
Vol 124 (4) ◽  
pp. 5
Author(s):  
V. M. Kotlyakov ◽  
L. N. Vasiliev ◽  
A. B. Kachalin ◽  
M. Yu. Moskalevsky ◽  
A. S. Tyuflin
2019 ◽  
Vol 13 (2) ◽  
pp. 427-449 ◽  
Author(s):  
Ludwig Schröder ◽  
Martin Horwath ◽  
Reinhard Dietrich ◽  
Veit Helm ◽  
Michiel R. van den Broeke ◽  
...  

Abstract. We developed a multi-mission satellite altimetry analysis over the Antarctic Ice Sheet which comprises Seasat, Geosat, ERS-1, ERS-2, Envisat, ICESat and CryoSat-2. After a consistent reprocessing and a stepwise calibration of the inter-mission offsets, we obtained monthly grids of multi-mission surface elevation change (SEC) with respect to the reference epoch 09/2010 (in the format of month/year) from 1978 to 2017. A validation with independent elevation changes from in situ and airborne observations as well as a comparison with a firn model proves that the different missions and observation modes have been successfully combined to a seamless multi-mission time series. For coastal East Antarctica, even Seasat and Geosat provide reliable information and, hence, allow for the analysis of four decades of elevation changes. The spatial and temporal resolution of our result allows for the identification of when and where significant changes in elevation occurred. These time series add detailed information to the evolution of surface elevation in such key regions as Pine Island Glacier, Totten Glacier, Dronning Maud Land or Lake Vostok. After applying a density mask, we calculated time series of mass changes and found that the Antarctic Ice Sheet north of 81.5∘ S was losing mass at an average rate of -85±16 Gt yr−1 between 1992 and 2017, which accelerated to -137±25 Gt yr−1 after 2010.


2020 ◽  
Author(s):  
Baojun Zhang ◽  
Quanming Yang ◽  
Zemin Wang ◽  
Hong Geng ◽  
Jiachun An ◽  
...  

<p>Satellite altimetry is an important data source for ice sheet change observation. The long-term time series of ice sheet changes can be obtained by combining satellite altimetry missions with similar sensor characteristics. Then, how to correct the inter-mission offsets becomes an important scientific issue. Review of previous studies, we found that the observations of satellite ascending and descending orbits also have an important influence on the estimation of inter-mission offsets. On this basis, have created a new least-square fitting mathematical model to estimate and correct the errors of ascending and descending orbits and inter-mission offsets by introducing the inter-mission offsets terms related to the observations of ascending and descending orbits. Utilizing this model, we developed a time series of monthly Antarctic ice sheet elevation changes of 5 km grid from May 2002 to April 2019. A validation with surface elevation from airborne observations and a comparison with surface elevation changes from ICESat proved that the proposed model can successfully estimate and correct the errors and be used to construct multi-mission surface elevation time series. Without a doubt, the temporal and spatial changes of Antarctic ice sheet elevation can be obtained from our monthly grid time series. From the time series, we find that over the period May 2002 to April 2019 the loss of ice and snow in the Antarctic ice sheet mainly occurred in the glaciers along the Amundsen coast in the West Antarctic and the Totten glacier in the East Antarctic, while the accumulation took place in Queen Maud of the East Antarctic. In May 2002, the Antarctic ice sheet experienced a volume loss of -71.4 ± 11.7 km<sup>3</sup>/yr, with an acceleration of –5.8 ± 1.2 km<sup>3</sup>/yr<sup>2</sup> over the period May 2002 to April 2019, including 45.0 ± 9.6 km<sup>3</sup>/yr and 0.1 ±1.0 km<sup>3</sup>/yr<sup>2</sup> for the East Antarctic ice sheet, -97.0 ± 4.4 km<sup>3</sup>/yr and -7.6 ±0.5 km<sup>3</sup>/yr<sup>2</sup> for the West Antarctic ice sheet and -19.5 ± 5.3 km<sup>3</sup>/yr and 1.7 ±0.5 km<sup>3</sup>/yr<sup>2</sup> for the Antarctic Peninsula ice sheet.</p>


2019 ◽  
Vol 49 (4) ◽  
pp. 403-424
Author(s):  
Fang Zou ◽  
Robert Tenzer ◽  
Samurdhika Rathnayake

Abstract In this study, we estimate the ice mass changes, the ice elevation changes and the vertical displacements in Antarctica based on analysis of multi-geodetic datasets that involve the satellite gravimetry (GRACE), the satellite altimetry (ICESat) and the global navigation satellite systems (GNSS). According to our estimates, the total mass change of the Antarctic ice sheet from GRACE data is −162.91 Gt/yr over the investigated period between April 2002 and June 2017. This value was obtained after applying the GIA correction of −98.12 Gt/yr derived from the ICE-5G model of the glacial iso-static adjustment. A more detailed analysis of mass balance changes for three individual drainage regions in Antarctica reveal that the mass loss of the West Antarctic ice sheet was at a rate of −143.11 Gt/yr. The mass loss of the Antarctic Peninsula ice sheet was at a rate of −24.31 Gt/yr. The mass of the East Antarctic ice sheet increased at a rate of 5.29 Gt/yr during the investigated period. When integrated over the entire Antarctic ice sheet, average rates of ice elevation changes over the period from March 2003 to October 2009 derived from ICESat data represent the loss of total ice volume of −155.6 km3.The most prominent features in ice volume changes in Antarctica are characterized by a strong dynamic thinning and ice mass loss in the Amundsen Sea Embayment that is part of the West Antarctic ice sheet. In contrast, coastal regions between Dronning Maud Land and Enderby Land exhibit a minor ice increase, while a minor ice mass loss is observed in Wilkes Land. The vertical load displacement rates estimated from GRACE and GPS data relatively closely agree with the GIA model derived based on the ice-load history and the viscosity profile. For most sites, the GRACE signal appears to be in phase and has the same amplitude as that obtained from the GPS vertical motions while other sites exhibit some substantial differences possibly attributed to thermo-elastic deformations associated with surface temperature.


2018 ◽  
Vol 12 (5) ◽  
pp. 1767-1778 ◽  
Author(s):  
Fifi Ibrahime Adodo ◽  
Frédérique Remy ◽  
Ghislain Picard

Abstract. Spaceborne radar altimeters are a valuable tool for observing the Antarctic Ice Sheet. The radar wave interaction with the snow provides information on both the surface and the subsurface of the snowpack due to its dependence on the snow properties. However, the penetration of the radar wave within the snowpack also induces a negative bias on the estimated surface elevation. Empirical corrections of this space- and time-varying bias are usually based on the backscattering coefficient variability. We investigate the spatial and seasonal variations of the backscattering coefficient at the S (3.2 GHz ∼ 9.4 cm), Ku (13.6 GHz ∼ 2.3 cm) and Ka (37 GHz ∼ 0.8 cm) bands. We identified that the backscattering coefficient at Ku band reaches a maximum in winter in part of the continent (Region 1) and in the summer in the remaining (Region 2), while the evolution at other frequencies is relatively uniform over the whole continent. To explain this contrasting behavior between frequencies and between regions, we studied the sensitivity of the backscattering coefficient at three frequencies to several parameters (surface snow density, snow temperature and snow grain size) using an electromagnetic model. The results show that the seasonal cycle of the backscattering coefficient at Ka frequency is dominated by the volume echo and is mainly driven by snow temperature evolution everywhere. In contrast, at S band, the cycle is dominated by the surface echo. At Ku band, the seasonal cycle is dominated by the volume echo in Region 1 and by the surface echo in Region 2. This investigation provides new information on the seasonal dynamics of the Antarctic Ice Sheet surface and provides new clues to build more accurate corrections of the radar altimeter surface elevation signal in the future.


2020 ◽  
Author(s):  
Athul Kaitheri ◽  
Anthony Mémin ◽  
Frédérique Rémy

<p>Precisely quantifying the Antarctic Ice Sheet (AIS) mass balance remains a challenge as several processes compete at differing degrees in the basin-scale with regional variations. Understanding of changes in AIS has been largely based on observations from various altimetry missions and Gravity Recovery And Climate Experiment (GRACE) missions due to its scale and coverage. Analysis of linear trends in surface height variations of AIS since the early 1990s showed multiple variabilities in the rate of changes over the period of time. These observations are a reflection of various underlying ice sheet processes. Therefore understanding the processes that interact on the ice sheet is important to precisely determine the response of the ice sheet to a rapidly changing climate.</p><p>Changing climate constitutes variations in major short term processes including snow accumulation and surface melting. Variations in accumulation rate and temperature at the ice sheet surface cause changes in the firn compaction (FC) rate. Variations in the FC rate change the AIS thickness, that should be detected from altimetry, but do not change its mass, as observed by the GRACE mission. We focus our study on the seasonal and interannual changes in the elevation and mass of the AIS. We use surface elevation changes from Envisat data and gravity changes derived from the latest GRACE solutions between 10/2002 and 10/2010. As mass changes observed using the GRACE mission is strongly impacted by long term isostasy, as it involves mantle mass redistribution, we remove from all dataset an 8-year trend. We use weather variable historical data solutions including surface mass balance, temperature and wind velocities from the regional climate model RACMO2.3p2 as input to an FC model to estimate AIS elevation changes. We obtain a very good correlation between height change estimates from GRACE, Envisat and RACMO2.3p2 at several places such as along the coast of Dronning Maud Land, Wilkes land and Amundsen sea sector. Considerable differences in Oates and Mac Robertson regions, with a strong seasonal signal in Envisat estimates, reflect spatial variability in physical parameters of the surface of the AIS due to climate parameter changes such as winds.</p>


2016 ◽  
Author(s):  
Bianca Kallenberg ◽  
Paul Tregoning ◽  
Janosch F. Hoffmann ◽  
Rhys Hawkins ◽  
Anthony Purcell ◽  
...  

Abstract. Mass balance changes of the Antarctic ice sheet are of significant interest due to its sensitivity to climatic changes and its contribution to changes in global sea level. While regional climate models successfully estimate mass input due to snowfall, it remains difficult to estimate the amount of mass loss due to ice dynamic processes. It's often been assumed that changes in ice dynamic rates only need to be considered when assessing long term ice sheet mass balance; however, two decades of satellite altimetry observations reveal that the Antarctic ice sheet changes unexpectedly and much more dynamically than previously expected. Despite available estimates on ice dynamic rates obtained from radar altimetry, information about changes in ice dynamic rates are still limited, especially in East Antarctica. Without understanding ice dynamic rates it is not possible to properly assess changes in ice sheet mass balance, surface elevation or to develop ice sheet models. In this study we investigate the possibility of estimating ice dynamic rates by removing modelled rates of surface mass balance, firn compaction and bedrock uplift from satellite altimetry and gravity observations. With similar rates of ice discharge acquired from two different satellite missions we show that it is possible to obtain an approximation of ice dynamic rates by combining altimetry and gravity observations. Thus, surface elevation changes due to surface mass balance, firn compaction and ice dynamic rates can be modelled and correlate with observed elevation changes from satellite altimetry.


1996 ◽  
Vol 23 ◽  
pp. 364-373 ◽  
Author(s):  
Jonathan L. Bamber ◽  
Philippe Huybrechts

This paper presents improved geometric boundary conditions (surface elevation and ice thickness) required as inputs to calculations of the surface-velocity field for the Antarctic ice sheet. A comparison of the two-dimensional horizontal velocity field obtained on the basis of conservation of mass (balance velocity) with the diagnostic velocity field calculated with an ice-sheet model (dynamic velocity) may yield information on shortcomings in the way the ice-sheet model describes the ice flow. Here, the surface-elevation grid is described in detail, as it has been generated specifically for such a study and represents a new standard in accuracy and resolution for calculating surface slopes. The digital-elevation model was generated on a 10 km grid size from over 20 000 000 height estimates obtained from eight 35 d repeat cycles of ERS-1 radar-altimeter data. For surface slopes less than 0.4°, the accuracy is better than 1.5 m. In areas of high surface slope (coastal and mountainous regions), the altimeter measurements have been supplemented with data taken from the Antarctic Digital Database. South of 81.5°, data from the SPRI folio map have been used. The ice-thickness grid was produced from a combination of a redigitization of the SPRI folio and the original radio-echo-sounding flight lines. For areas of grounded ice, the elevation of the bed was estimated from surface elevation and ice thickness. Significant differences (in excess of 25% of ice thickness) were obtained between an earlier digitization of the folio bed-elevation map and the data set derived here. Furthermore, a new value of 25.6 × 106 km3 was obtained for the total volume of the ice sheet and ice shelves, which is a reduction of 12% compared with the original estimate derived during the compilation of the SPRI folio. These differences will have an important influence on the results obtained by numerical ice-sheet models.


2014 ◽  
Vol 55 (66) ◽  
pp. 198-204 ◽  
Author(s):  
Zhenxiong Gu ◽  
Tiantian Feng ◽  
Marco Scaioni ◽  
Hangbin Wu ◽  
Jun Liu ◽  
...  

AbstractThe aim of this research is to investigate elevation changes in the Antarctic ice sheet by comparing two digital elevation models (DEMs) derived from satellite altimetry data covering the period 1994–2004. Data collected by ERS-1/2 satellite radar altimetry and by NASA GLAS/ICESat laser altimetry were used. After preprocessing and resampling at the same spatial resolution, both DEMs were compared in a pointwise fashion and elevation differences computed, which consisted of three main components: (1) actual elevation change, (2) errors in the original data sources and (3) interpolation errors that arose during generation of the DEMs. The objectives of the research were to analyze errors, attempt to mitigate systematic effects when possible, and draw some conclusions about the limitations of using DEM products for computing ice-sheet elevation change at local and continental scales. A linear correlation between errors in elevation differences and surface slope was found in the slope range [0°, 0.4°]. This trend was interpreted as residual slope-induced systematic error and compensated for. Finally, an elevation difference map of the Antarctic ice sheet was generated. Analysis of the derived elevation changes at the drainage basin was also made. Results are compared with the results of previous studies.


1998 ◽  
Vol 27 ◽  
pp. 1-6 ◽  
Author(s):  
David G. Vaughan ◽  
Jonathan L. Bamber

A digital elevation model (DEM) of the surface of the Antarctic ice sheet is compared with a simple two-dimensional ice-flow model to illuminate gross distortions (>500 m) of the ice-surface elevation. We use a DEM derived from ERS-1 satellite altimetry, airborne data and TWERLE balloon data. This is compared with an ice-sheet elevation model generated by applying theoretical surface elevations, calculated for two-dimensional ice flow, to isolines of distance from the grounding line (continentality). The model is scaled using only one parameter, to match the measured surface elevation at Dome Argus. The model is far from rigorous, violating continuity conditions, ignoring variations in surface mass balance and temperature, and assuming uniform basal conditions. However, the comparison of model and observed surface elevations is illuminating in terms of the behaviour of the ice sheet at a continental scale. Across the ice sheet the rms difference between modelled elevation and the DEM is around 300 m, but much of this results from isolated areas of much greater disagreement. We ascribe these gross differences to the effects of basal conditions. in four areas, the observed surface is more than 500 m higher than the modelled surface. Most of these are immediately upstream of substantial areas of rock outcrop and are caused by the damming effect of these mountain ranges. in nine areas, the measured surface is more than 500 m lower than predicted. Eight of these areas, in West Antarctica and the Lambert Glacier basin, are associated with suspected areas of basal sliding. The ninth is an area of 250 000 km2 in East Antarctica not previously noted as having unusual flow characteristics, but for which very few-data exist. We speculate that this area results from unusual basal conditions resulting in a low-profile ice sheet. A low-profile ice sheet of this size with in the East Antarctic ice sheet indicates that basal conditions are perhaps more variable than previously thought.


2018 ◽  
Author(s):  
Ludwig Schröder ◽  
Martin Horwath ◽  
Reinhard Dietrich ◽  
Veit Helm

Abstract. We developed an approach for a multi-mission satellite altimetry analysis over the Antarctic Ice Sheet which comprises Seasat, Geosat, ERS-1, ERS-2, Envisat, ICESat and CryoSat-2. In a first step we apply a consistent reprocessing of the radar alitmetry data which improves the measurement precision by up to 50 %. We then perform a joint repeat altimetry analysis of all missions. We estimate inter-mission offsets by approaches adapted to the temporal overlap or non-overlap and to the similarity or dissimilarity of involved altimetry techniques. Hence, we obtain monthly grids forming a combined surface elevation change time series. Owing to the early missions Seasat and Geosat, the time series span almost four decades from 07/1978 to 12/2017 over 25 % of the ice sheet area (coastal regions of East Antarctica and the Antarctic Peninsula). Since the launch of ERS-1 79 % of the ice sheet area is covered by observations. Over this area, we obtain a negative volume trend of −34 ± 5 km3 yr−1 for the more than 25-year period (04/1992–12/2017). These volume losses have significantly accelerated to a rate of −170 ± 11 km3 yr−1 for 2010–2017. Interannual variations significantly impact decadal volume rates which highlights the importance of the long-term time series. Our time series show a high coincidence with modeled cumulated precipitation anomalies and with satellite gravimetry. This supports the interpretation with respect to snowfall anomalies or dynamic thinning. Moreover, the correlation with cumulated precipitation anomalies back to the Seasat and Geosat periods highlights that the inter-mission offsets were successfully corrected and that the early missions add valuable information.


Sign in / Sign up

Export Citation Format

Share Document