scholarly journals Role of Triggering Receptor Expressed on Myeloid Cells in the Activation of Innate Immunity

2011 ◽  
Vol 7 (3) ◽  
pp. 70
Author(s):  
V. G. Matveyeva ◽  
A. S. Golovkin ◽  
E. V. Grigoryev ◽  
A. V. Ponasenko
Blood ◽  
2012 ◽  
Vol 120 (7) ◽  
pp. 1380-1389 ◽  
Author(s):  
Jan Fric ◽  
Teresa Zelante ◽  
Alicia Y. W. Wong ◽  
Alexandra Mertes ◽  
Hong-Bing Yu ◽  
...  

Abstract The calcineurin/nuclear factor of activated T cells (NFAT) signaling pathway mediates multiple adaptive T-cell functions, but recent studies have shown that calcineurin/NFAT signaling also contributes to innate immunity and regulates the homeostasis of innate cells. Myeloid cells, including granulocytes and dendritic cells, can promote inflammation, regulate adaptive immunity, and are essential mediators of early responses to pathogens. Microbial ligation of pattern-recognition receptors, such as TLR4, CD14, and dectin 1, is now known to induce the activation of calcineurin/NFAT signaling in myeloid cells, a finding that has provided new insights into the molecular pathways that regulate host protection. Inhibitors of calcineurin/NFAT binding, such as cyclosporine A and FK506, are broadly used in organ transplantation and can act as potent immunosuppressive drugs in a variety of different disorders. There is increasing evidence that these agents influence innate responses as well as inhibiting adaptive T-cell functions. This review focuses on the role of calcineurin/NFAT signaling in myeloid cells, which may contribute to the various unexplained effects of immunosuppressive drugs already being used in the clinic.


2021 ◽  
Vol 99 (3) ◽  
pp. 315-326
Author(s):  
Johannes Wild ◽  
Philip Wenzel

AbstractAlthough essential hypertension affects a large proportion of the human population and is one of the key drivers of cardiovascular mortality worldwide, we still do not have a complete understanding of its pathophysiology. More than 50 years ago, the immune system has been identified as an important part of the pathogenesis of arterial hypertension. An exceeding variety of recent publications deals with the interplay between the numerous different components of the immune system and mechanisms of arterial hypertension and has substantially contributed to our understanding of the role of immunity and inflammation in the pathogenesis of the disease. In this review, we focus on myeloid cells and anatomical barriers as particular aspects of innate immunity in arterial hypertension. Since it represents a first line of defense protecting against pathogens and maintaining tissue homeostasis, innate immunity provides many mechanistic hinge points in the area of hypertension.


2021 ◽  
pp. 135941
Author(s):  
Megan L. Uhelski ◽  
Yan Li ◽  
Miriam M. Fonseca ◽  
E. Alfonso Romero-Snadoval ◽  
Patrick M. Dougherty

2021 ◽  
Vol 13 (3) ◽  
pp. 363-382
Author(s):  
Mario Dioguardi ◽  
Angela Pia Cazzolla ◽  
Claudia Arena ◽  
Diego Sovereto ◽  
Giorgia Apollonia Caloro ◽  
...  

COVID-19 (Coronavirus Disease 2019) is an emerging viral disease caused by the coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), which leads to severe respiratory infections in humans. The first reports came in December 2019 from the city of Wuhan in the province of Hubei in China. It was immediately clear that children developed a milder disease than adults. The reasons for the milder course of the disease were attributed to several factors: innate immunity, difference in ACE2 (angiotensin-converting enzyme II) receptor expression, and previous infections with other common coronaviruses (CovH). This literature review aims to summarize aspects of innate immunity by focusing on the role of ACE2 expression and viral infections in children in modulating the antibody response to SARS-CoV-2 infection. This review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Articles deemed potentially eligible were considered, including those dealing with COVID-19 in children and providing more up-to-date and significant data in terms of epidemiology, prognosis, course, and symptoms, focusing on the etiopathogenesis of SARS-CoV-2 disease in children. The bibliographic search was conducted using the search engines PubMed and Scopus. The following search terms were entered in PubMed and Scopus: COVID-19 AND ACE2 AND Children; COVID-19 AND Immunity innate AND children. The search identified 857 records, and 18 studies were applicable based on inclusion and exclusion criteria that addressed the issues of COVID-19 concerning the role of ACE2 expression in children. The scientific literature agrees that children develop milder COVID-19 disease than adults. Milder symptomatology could be attributed to innate immunity or previous CovH virus infections, while it is not yet fully understood how the differential expression of ACE2 in children could contribute to milder disease.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1720
Author(s):  
Kuo-Chieh Liao ◽  
Mariano A. Garcia-Blanco

The importance of transcriptional regulation of host genes in innate immunity against viral infection has been widely recognized. More recently, post-transcriptional regulatory mechanisms have gained appreciation as an additional and important layer of regulation to fine-tune host immune responses. Here, we review the functional significance of alternative splicing in innate immune responses to viral infection. We describe how several central components of the Type I and III interferon pathways encode spliced isoforms to regulate IFN activation and function. Additionally, the functional roles of splicing factors and modulators in antiviral immunity are discussed. Lastly, we discuss how cell death pathways are regulated by alternative splicing as well as the potential role of this regulation on host immunity and viral infection. Altogether, these studies highlight the importance of RNA splicing in regulating host–virus interactions and suggest a role in downregulating antiviral innate immunity; this may be critical to prevent pathological inflammation.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 796
Author(s):  
Christian Kirschneck ◽  
Nadine Straßmair ◽  
Fabian Cieplik ◽  
Eva Paddenberg ◽  
Jonathan Jantsch ◽  
...  

During orthodontic tooth movement, transcription factor hypoxia-inducible factor 1α (HIF1α) is stabilised in the periodontal ligament. While HIF1α in periodontal ligament fibroblasts can be stabilised by mechanical compression, in macrophages pressure application alone is not sufficient to stabilise HIF1α. The present study was conducted to investigate the role of myeloid HIF1α during orthodontic tooth movement. Orthodontic tooth movement was performed in wildtype and Hif1αΔmyel mice lacking HIF1α expression in myeloid cells. Subsequently, µCT images were obtained to determine periodontal bone loss, extent of orthodontic tooth movement and bone density. RNA was isolated from the periodontal ligament of the control side and the orthodontically treated side, and the expression of genes involved in bone remodelling was investigated. The extent of tooth movement was increased in Hif1αΔmyel mice. This may be due to the lower bone density of the Hif1αΔmyel mice. Deletion of myeloid Hif1α was associated with increased expression of Ctsk and Acp5, while both Rankl and its decoy receptor Opg were increased. HIF1α from myeloid cells thus appears to play a regulatory role in orthodontic tooth movement.


Cytotherapy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. S96
Author(s):  
Y. Wang ◽  
N. Diwanji ◽  
T. Nicholson ◽  
S. Mukherjee ◽  
D. Getts

Sign in / Sign up

Export Citation Format

Share Document