scholarly journals The Role of Carotenoid Cleavage Dioxygenase 4 in Flower Color of the Allopolyploid Brassica napus

2014 ◽  
Author(s):  
Leanne Denice Fogg
Planta ◽  
2021 ◽  
Vol 253 (1) ◽  
Author(s):  
Ledong Jia ◽  
Junsheng Wang ◽  
Rui Wang ◽  
Mouzheng Duan ◽  
Cailin Qiao ◽  
...  

Abstract Main conclusion The molecular mechanism underlying white petal color in Brassica napus was revealed by transcriptomic and metabolomic analyses. Abstract Rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide, but the mechanisms underlying flower color in this crop are known less. Here, we performed metabolomic and transcriptomic analyses of the yellow-flowered rapeseed cultivar ‘Zhongshuang 11’ (ZS11) and the white-flowered inbred line ‘White Petal’ (WP). The total carotenoid contents were 1.778-fold and 1.969-fold higher in ZS11 vs. WP petals at stages S2 and S4, respectively. Our findings suggest that white petal color in WP flowers is primarily due to decreased lutein and zeaxanthin contents. Transcriptome analysis revealed 10,116 differentially expressed genes with a fourfold or greater change in expression (P-value less than 0.001) in WP vs. ZS11 petals, including 1,209 genes that were differentially expressed at four different stages and 20 genes in the carotenoid metabolism pathway. BnNCED4b, encoding a protein involved in carotenoid degradation, was expressed at abnormally high levels in WP petals, suggesting it might play a key role in white petal formation. The results of qRT-PCR were consistent with the transcriptome data. The results of this study provide important insights into the molecular mechanisms of the carotenoid metabolic pathway in rapeseed petals, and the candidate genes identified in this study provide a resource for the creation of new B. napus germplasms with different petal colors.


PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e39010 ◽  
Author(s):  
Shun K. Hirota ◽  
Kozue Nitta ◽  
Yuni Kim ◽  
Aya Kato ◽  
Nobumitsu Kawakubo ◽  
...  

Ecology ◽  
2003 ◽  
Vol 84 (7) ◽  
pp. 1733-1743 ◽  
Author(s):  
Rebecca E. Irwin ◽  
Sharon Y. Strauss ◽  
Shonna Storz ◽  
Aimee Emerson ◽  
Genevieve Guibert

2020 ◽  
Vol 11 ◽  
Author(s):  
Ha-il Jung ◽  
Bok-Rye Lee ◽  
Mi-Jin Chae ◽  
Eun-Jin Lee ◽  
Tae-Gu Lee ◽  
...  

The role of ascorbate (AsA) in antioxidant defense system-associated resistance to cadmium (Cd) in oilseed rape plants has not yet been clearly demonstrated. The present study investigated the critical role of exogenous AsA on the physiological and biochemical responses of reactive oxygen species (ROS) and antioxidant scavenging defense systems in oilseed rape (Brassica napus L. cv. Tammi) seedlings exposed to Cd. Cd (10 μM) treatment led to significant reductions in plant growth; increases in the levels of superoxide anion radical, hydrogen peroxide, and malondialdehyde; and increases in Cd uptake and accumulation by the roots and shoots in hydroponically grown 10-day-old seedlings. Moreover, it reduced AsA content and AsA redox ratios, which have been correlated with reductions in glutathione (GSH) and/or nicotinamide adenine dinucleotide phosphate (NADPH) redox status. However, exogenously applying AsA to Cd-exposed seedlings decreased Cd-induced ROS, improved antioxidant defense systems by increasing AsA, GSH, and NADPH contents, and increased Cd uptake and accumulation in both roots and shoots of the plants. These results provided evidence that the enhancement in AsA redox status can be linked to an increase in the GSH and/or NADPH redox ratios through the induction of the AsA–GSH–NADPH cycle. Thus, these results suggest that exogenous AsA application to oilseed rape seedlings under Cd stress might alleviate the overall Cd toxicity by regulating the homeostasis of the AsA–GSH–NADPH cycle, which reestablishes the steady-state cellular redox status.


1995 ◽  
Vol 50 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
Michael Storck ◽  
Maria D. Sacristán

Abstract Brassica juncea, Brassica carinata and Sinapis arvensis resistant lines to Leptosphaeria maculans and four Brassica napus cuitivars susceptible to this pathogen in seedling stage were analyzed in relation to the accumulation of phytoalexins after inoculation with L. maculans. Cotyledon inoculations with spore suspensions of an aggressive and a non-aggressive isolate of L. maculans were performed on seedlings of these lines. The quantity of accumulated phytoalexins in the cotyledons was determined at different time intervals after inoculation. The content and composition of phytoalexins differed considerably among the tested species and according to the fungal isolate used. In the tested Brassica species seedling resistance against L. maculans could not be related to phytoalexin accumulation. However, in Sinapis arvensis phytoalexins might contribute to the resistance reaction to this pathogen.


Sign in / Sign up

Export Citation Format

Share Document