scholarly journals Enhanced Production of Cellulase from the Agricultural By-product Rice bran by Escherichia coli JM109/LBH-10 with a Shift in Vessel Pressure of a Pilot-scale Bioreactor

BioResources ◽  
2016 ◽  
Vol 11 (3) ◽  
Author(s):  
Chi-Jong Jong ◽  
Yong-Suk Lee ◽  
Jin-Woo Lee
2019 ◽  
Vol 9 (19) ◽  
pp. 4083
Author(s):  
Chung-Il Park ◽  
Jae-Hong Lee ◽  
Jianhong Li ◽  
Jin-Woo Lee

The optimal conditions including the aeration rate and agitation speed of bioreactors for the production of carboxymethylcellulase (CMCase) by a recombinant Escherichia coli KACC 91335P, expressing CMCase gene of B. velezensis A-68, were different from those for its cell growth. The enhanced production of CMCase by E. coli KACC 91335P with the conventional multistage process needs at least two bioreactors. Shifts in the optimal conditions of the aeration rate and agitation speed of the bioreactor from the cell growth of E. coli KACC 91335P to those for its production of CMCase were investigated for development of the simple and economic process with the high productivity and low cost. The production of CMCase by E. coli KACC 91335P with shifts in the optimal conditions of the aeration rate and agitation speed from the cell growth to its production of CMCase in a 100 L pilot-scale bioreactor was 1.36 times higher than that with a fixed optimal conditions of the aeration rate and agitation speed for the production of CMCase and it was even 1.54 times higher than that with a fixed optimal conditions of the aeration rate and agitation speed for cell growth. The best time for the shift in the optimal conditions was found to be the mid-log phase of cell growth. Owing to the mixed-growth-associated production of CMCase by E. coli KACC 91335P, shifts in the optimal conditions of the aeration rate and agitation speed of bioreactors from the cell growth to its production of CMCase seemed to result in relatively more cells for the participation in its production of CMCase, which in turn enhanced its production of CMCase. The process with a simple control for shifts in the aeration rate and agitation speed of a bioreactor for the enhanced production of CMCase by E. coli KACC 91335P on the pilot-scale can be directly applied to the industrial-scaled production of cellulase.


2014 ◽  
Vol 77 (9) ◽  
pp. 1487-1494 ◽  
Author(s):  
ANNEMARIE L. BUCHHOLZ ◽  
GORDON R. DAVIDSON ◽  
BRADLEY P. MARKS ◽  
EWEN C. D. TODD ◽  
ELLIOT T. RYSER

Cross-contamination of fresh-cut leafy greens with residual Escherichia coli O157:H7–contaminated product during commercial processing was likely a contributing factor in several recent multistate outbreaks. Consequently, radicchio was used as a visual marker to track the spread of the contaminated product to iceberg lettuce in a pilot-scale processing line that included a commercial shredder, step conveyor, flume tank, shaker table, and centrifugal dryer. Uninoculated iceberg lettuce (45 kg) was processed, followed by 9.1 kg of radicchio (dip inoculated to contain a four-strain, green fluorescent protein–labeled nontoxigenic E. coli O157:H7 cocktail at 106 CFU/g) and 907 kg (2,000 lb) of uninoculated iceberg lettuce. After collecting the lettuce and radicchio in about 40 bags (~22.7 kg per bag) along with water and equipment surface samples, all visible shreds of radicchio were retrieved from the bags of shredded product, the equipment, and the floor. E. coli O157:H7 populations were quantified in the lettuce, water, and equipment samples by direct plating with or without prior membrane filtration on Trypticase soy agar containing 0.6% yeast extract and 100 ppm of ampicillin. Based on triplicate experiments, the weight of radicchio in the shredded lettuce averaged 614.9 g (93.6%), 6.9 g (1.3%), 5.0 g (0.8%), and 2.8 g (0.5%) for bags 1 to 10, 11 to 20, 21 to 30, and 31 to 40, respectively, with mean E. coli O157:H7 populations of 1.7, 1.2, 1.1, and 1.1 log CFU/g in radicchio-free lettuce. After processing, more radicchio remained on the conveyor (9.8 g; P < 0.05), compared with the shredder (8.3 g), flume tank (3.5 g), and shaker table (0.1 g), with similar E. coli O157:H7 populations (P > 0.05) recovered from all equipment surfaces after processing. These findings clearly demonstrate both the potential for the continuous spread of contaminated lettuce to multiple batches of product during processing and the need for improved equipment designs that minimize the buildup of residual product during processing.


2005 ◽  
Vol 71 (12) ◽  
pp. 7880-7887 ◽  
Author(s):  
Sang Jun Lee ◽  
Dong-Yup Lee ◽  
Tae Yong Kim ◽  
Byung Hun Kim ◽  
Jinwon Lee ◽  
...  

ABSTRACT Comparative analysis of the genomes of mixed-acid-fermenting Escherichia coli and succinic acid-overproducing Mannheimia succiniciproducens was carried out to identify candidate genes to be manipulated for overproducing succinic acid in E. coli. This resulted in the identification of five genes or operons, including ptsG, pykF, sdhA, mqo, and aceBA, which may drive metabolic fluxes away from succinic acid formation in the central metabolic pathway of E. coli. However, combinatorial disruption of these rationally selected genes did not allow enhanced succinic acid production in E. coli. Therefore, in silico metabolic analysis based on linear programming was carried out to evaluate the correlation between the maximum biomass and succinic acid production for various combinatorial knockout strains. This in silico analysis predicted that disrupting the genes for three pyruvate forming enzymes, ptsG, pykF, and pykA, allows enhanced succinic acid production. Indeed, this triple mutation increased the succinic acid production by more than sevenfold and the ratio of succinic acid to fermentation products by ninefold. It could be concluded that reducing the metabolic flux to pyruvate is crucial to achieve efficient succinic acid production in E. coli. These results suggest that the comparative genome analysis combined with in silico metabolic analysis can be an efficient way of developing strategies for strain improvement.


2010 ◽  
Vol 76 (13) ◽  
pp. 4560-4565 ◽  
Author(s):  
Yasser Elbahloul ◽  
Alexander Steinbüchel

ABSTRACT Fatty acid ethyl esters (FAEEs) were produced in this study by the use of an engineered Escherichia coli p(Microdiesel) strain. Four fed-batch pilot scale cultivations were carried out by first using glycerol as sole carbon source for biomass production before glucose and oleic acid were added as carbon sources. Cultivations yielded a cell density of up to 61 ± 3.1 g of cell dry mass (CDM) per liter and a maximal FAEE content of 25.4% ± 1.1% (wt/wt) of CDM.


Sign in / Sign up

Export Citation Format

Share Document