Thermal and kinetic behaviors of corn stover and polyethylene in catalytic co-pyrolysis
Thermal decomposition characteristics and kinetics of high-density polyethylene (HDPE), corn stover (CS), and their blended mixture (1:1 w/w ratio) during non-catalytic and catalytic co-pyrolysis were studied via thermogravimetric analysis (TGA). The results indicated synergetic interactions between the biomass and the plastics during co-pyrolysis as measured by weight loss (ΔW); this effect was attributed to radical interactions during co-pyrolysis. The pyrolysis catalysts with higher nickel loadings (5%, 10%, and 15%) appreciably diminished the solid residue. Kinetic studies indicated that the pyrolysis was a first-order reaction based on the fitted thermogravimetric data. The activation energy (E) and pre-exponential factor (A) ranged between 26.13 kJ/mol to 392.67 kJ/mol and between 156.24 min-1 to 9.19 x 1023 min-1, respectively. There was a kinetic compensation effect (KCE) observed among the two kinetic parameters. The activation energy (E) decreased for each pyrolysis stage with the presence of a catalyst. The results indicated that catalytic co-pyrolysis could provide great potential for reducing the pyrolysis energy input.