Thermal and kinetic behaviors of corn stover and polyethylene in catalytic co-pyrolysis

BioResources ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. 4102-4117
Author(s):  
Shaoqing Wang ◽  
Xiaona Lin ◽  
Zhihe Li ◽  
Weiming Yi ◽  
Xueyuan Bai

Thermal decomposition characteristics and kinetics of high-density polyethylene (HDPE), corn stover (CS), and their blended mixture (1:1 w/w ratio) during non-catalytic and catalytic co-pyrolysis were studied via thermogravimetric analysis (TGA). The results indicated synergetic interactions between the biomass and the plastics during co-pyrolysis as measured by weight loss (ΔW); this effect was attributed to radical interactions during co-pyrolysis. The pyrolysis catalysts with higher nickel loadings (5%, 10%, and 15%) appreciably diminished the solid residue. Kinetic studies indicated that the pyrolysis was a first-order reaction based on the fitted thermogravimetric data. The activation energy (E) and pre-exponential factor (A) ranged between 26.13 kJ/mol to 392.67 kJ/mol and between 156.24 min-1 to 9.19 x 1023 min-1, respectively. There was a kinetic compensation effect (KCE) observed among the two kinetic parameters. The activation energy (E) decreased for each pyrolysis stage with the presence of a catalyst. The results indicated that catalytic co-pyrolysis could provide great potential for reducing the pyrolysis energy input.


2001 ◽  
Vol 36 (3) ◽  
pp. 589-604 ◽  
Author(s):  
Julian M. Dust ◽  
Christopher S. Warren

Abstract The kinetics of the alkaline rearrangement of O,O-dimethyl-(2,2,2-trichloro-1- hydroxyethyl)phosphonate, (trichlorfon, 1), the active insecticidal component in such formulations as Dylox, was followed at 25±0.5°C by high pressure liquid chromatography (UV-vis detector, 210 nm). The rearrangement product, O,Odimethyl- O-(2,2-dichloroethenyl)phosphate (dichlorovos, 2), which is a more potent biocide than trichlorfon, undergoes further reaction, and the kinetics, consequently, cannot be treated by a standard pseudo-first-order plot. A two-point van't Hoff (initial rates) method was used to obtain pseudo-first-order rate constants (kѱ) at 25, 35 and 45°C: 2.6 × 10-6, 7.4 × 10-6 and 2.5 × 10-5 s-1, respectively. Arrhenius treatment of this data gave an activation energy (Ea) of 88 kJ·mol-1 with a pre-exponential factor (A) of 5.5 × 109 s-1. Kinetic trials at pH 8.0 using phosphate and tris buffer systems show no buffer catalysis in this reaction and indicate that the rearrangement is subject to specific base catalysis. Estimates are reported for pseudo-first-order half-lives for trichlorfon at pH 8.0 for environmental conditions in aqueous systems in the Corner Brook region of western Newfoundland, part of the site of a recent trichlorfon aerial spray program.



2011 ◽  
Vol 233-235 ◽  
pp. 481-486
Author(s):  
Wen Bo Zhao ◽  
Ning Zhao ◽  
Fu Kui Xiao ◽  
Wei Wei

The synthesis of dimethyl carbonate (DMC) from urea and methanol includes two main reactions: one amino of urea is substituted by methoxy to produce the intermediate methyl carbamate (MC) which further converts to DMC via reaction with methanol again. In a stainless steel autoclave, the kinetics of these reactions was separately investigated without catalyst and with Zn-containing catalyst. Without catalyst, for the first reaction, the reaction kinetics can be described as first order with respect to the concentrations of methanol and methyl carbamate (MC), respectively. For the second reaction, the results exhibit characteristics of zero-order reaction. Over Zn-containing catalyst, the first reaction is neglected in the kinetics model since its rate is much faster than second reaction. After the optimization of reaction condition, the macro-kinetic parameters of the second reaction are obtained by fitting the experimental data to a pseudo-homogenous model, in which a side reaction of DMC synthesis is incorporated since it decreases the yield of DMC drastically at high temperature. The activation energy of the reaction from MC to DMC is 104 KJ/mol while that of the side reaction of DMC is 135 KJ/mol.



2020 ◽  
pp. 350-350
Author(s):  
Hui Liu ◽  
Chenglang Xiang ◽  
Jie Mu ◽  
Jieyu Yao ◽  
Dong Ye ◽  
...  

Oil sludge (OS) is an organic solid waste in the petrochemical industry and improper treatment of OS will cause environmental pollution. Pyrolysis is an effective way to realize its resource reuse. In order to understand the pyrolysis behavior and thermodynamic characteristics of OS, four OS samples from storage tanks were used as the research object, and pyrolysis experiments were carried out at heating rates of 5, 10, and 15?/min under a nitrogen atmosphere. The kinetic parameters of pyrolysis of OS are calculated by three equal conversion methods (Friedman method (FR), Flynn-Wall-Ozawa method (FWO) and Distributed activation energy model (DAEM)), and the most possible thermodynamic models for the main pyrolysis phase were analyzed and discussed by introducing the Malek method. The results show: High heating rate can promote the pyrolysis of OS; In the pyrolysis stage, the apparent activation energy increases with the increase of the conversion rate. The apparent activation energy calculated by the FR method is more reliable. The average apparent activation energies of the four OS are 221.23, 84.71, 94.67 and 116.56 kJ/mol, respectively. The apparent activation energy and the pre-exponential factor are positively correlated, indicating that there is a kinetic compensation effect in the pyrolysis process. The thermodynamic models of the four OS samples are all three-dimensional diffusion models, but their integral functions are different. The research results can provide theoretical support for the industrialization, harmlessness and resource utilization of OS pyrolysis.



2014 ◽  
Vol 44 (3) ◽  
pp. 195-201
Author(s):  
L. KUNIGK ◽  
S. P. GALIZIA ◽  
R.T. K. SHIKISHIMA ◽  
R. GEDRAITE ◽  
C. H. JURKIEWICZ

Peracetic acid (PAA) is a strong oxidant used by the food industry as a sanitizer, in medical area as a disinfectant and by the textiles and paper industries as a bleacher. Its decomposition rate is an important parameter in these applications. The main purpose of this paper is to study the decomposition kinetics of PAA between 25 and 45 °C in solutions with pH 3.11, 5.0 and 7.0. The decomposition of PAA is a first-order reaction for all solutions and temperatures studied. The rate constants were between 2.08·10-3 and 9.44·10-3 h-1 (pH 3.11), between 2.61·10-3 and 16.69·10-3 h-1 (pH 5.0) and between 7.50·10-3 and 47.63·10-3 h-1 (pH 7.0). The activation energy of PAA decomposition in aqueous solutions are 58.36 and 72.89 kJ·mol-1 when pH was 3.11 and 5.0, respectively.



Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2813 ◽  
Author(s):  
Sergey Vyazovkin

The Kissinger method is an overwhelmingly popular way of estimating the activation energy of thermally stimulated processes studied by differential scanning calorimetry (DSC), differential thermal analysis (DTA), and derivative thermogravimetry (DTG). The simplicity of its use is offset considerably by the number of problems that result from underlying assumptions. The assumption of a first-order reaction introduces a certain evaluation error that may become very large when applying temperature programs other than linear heating. The assumption of heating is embedded in the final equation that makes the method inapplicable to any data obtained on cooling. The method yields a single activation energy in agreement with the assumption of single-step kinetics that creates a problem with the majority of applications. This is illustrated by applying the Kissinger method to some chemical reactions, crystallization, glass transition, and melting. In the cases when the isoconversional activation energy varies significantly, the Kissinger plots tend to be almost perfectly linear that means the method fails to detect the inherent complexity of the processes. It is stressed that the Kissinger method is never the best choice when one is looking for insights into the processes kinetics. Comparably simple isoconversional methods offer an insightful alternative.



1987 ◽  
Vol 52 (6) ◽  
pp. 1527-1544 ◽  
Author(s):  
Ulrika Králíková ◽  
Martin Bajus ◽  
Jozef Baxa

The kinetics of pyrolysis of methylcyclohexane was investigated from the viewpoint of coke formation in a steel tubular reactor (S/V = 6·65 cm-1) at 0·1 MPa, 700 to 820 °C and residence time 0·01 to 0·24 s. Decomposition of methylcyclohexane proceeds as a first order reaction with a frequency factor 6·31 . 1015 s-1 and activation energy 251·2 kJ mol-1. The course of secondary reactions associated with the formation of coke is discussed. Investigation of coke formation showed a greater tendency of methylcyclohexane to coking in comparison with heptane. A prominent role plays the course of dehydrogenation of cycloalkane radicals up to aromates, this being reflected by the overall conversion of methylcyclohexane, and, on the other hand the thus formed aromates enter the consecutive reactions leading to coke.



2011 ◽  
Vol 236-238 ◽  
pp. 771-774
Author(s):  
Xiao Ming Yue ◽  
Zhi Min Zong ◽  
Bing Sun ◽  
Ying Hua Wang ◽  
Yu Qing ◽  
...  

A new catalyst with two active constituents interacting with activated carbon was prepared. As a model reaction for coal liquefaction, the hydrocracking of di(1-naphthyl)methane (DNM) was investigated under different reaction conditions over the catalyst. The results show that the catalyst converts DNM hydrocraking into 1-methylnaphthalene and naphthalene with high selectively, without any hydrogenation product. Kinetic analysis indicates that DNM hydrocracking in the temperature range of 170-300 °C could be considered as a first order reaction. The activation energy E and pre-exponential factor A for DNM hydrocracking for different reaction times were calculated.



2014 ◽  
Vol 887-888 ◽  
pp. 951-954
Author(s):  
Hong Kai Zhao ◽  
Hong Li Wang

Kinetic parameters are calculated based on the reactive temperature rise curve measured by adiabatic approach at the temperature of 145 to 160 °C with the catalytic system of NaOH and acyl caprolactam End-capped butadiene-acrylonitrile rubber (CHTBN) or styrene-butadiene rubber (CHTBS). The reaction order is first order, the activation energy is between 72.91−73.16 kJ∙mol−1 and the pre-exponential factor is between 3.22×1011− 3.38×1011 mol1−n∙s−1 in the system of CHTBN/NaOH. While in CHTBS/NaOH, the reaction order is between 1.23-1.34, the activation energy is between 85.55-86.88 kJ∙mol−1 and the pre-exponential factor is between 4.52×1011−5.0 9×1011 mol1−n∙s−1. The adiabatic reaction kinetic model of caprolactam anion was constructed based on the existing research findings, by which the polymerizing reaction is simulated. The coincidence between the simulation results and the experimental data revealed that the model is reasonable and correct.



2012 ◽  
Vol 18 (2) ◽  
pp. 137-145 ◽  
Author(s):  
Yong Sun ◽  
Gang Yang ◽  
Jin-Ping Zhang ◽  
Ming-Shun Yao

The self-made KOH together with NH4OH pulping of corn stover was investigated. The combined alkaline system could effectively remove lignin during pulping. There are three stages of lignin removal during delginification. Approximately 90% of lignin could be removed after temperature reached 150?C for over 30 minutes. The p-hydroxyl phenol groups in lignin could be completely removed during the delignification reaction. The tendency of the increase of the crystalline degree of cellulose is observed with increase of reaction temperature. The kinetics of delignification is found to be the first order with respect to the remained lignin and the 0.4 order with respect to the remained hydroxide concentration. The activation energy of delignification is 23 kJ/mol. The solution obtained from precipitation of lignin is rich in nitrogen, phosphorous, potassium elements and organic matters. Various techniques including FT-IR, GPC, DSC, were applied to characterize the acid precipitated lignin. The result shows that the lignin with the polydispersity of 1.4 still maintains the p-coumaryl, coniferyl, and sinapyl units in its matrix.



Author(s):  
Somayeh Ebrahimi ◽  
Jafarsadegh Moghaddas

The coking process includes two dynamic and isothermal steps. In this process, some factors control the coke formation kinetics. In this research, effects of some important and effective parameters of feed on the quality of petroleum coke were studied. Two hydrocarbon residue feeds; Cracked Fuel Oil (CFO) and Styrene Monomer Tar (SMTAR) were used at 500°C with atmospheric pressure of nitrogen used as an inert gas. Rate of weight loss and gas evolution from these feeds were considered by data of thermal analysis TG (thermogravimetry) and DTG (derivative thermogravimetry). Based on the results, CFO was assigned as the better feed. After selecting better feed, simultaneous thermogravimetry-differential analysis (TG-DTA) was used to study the pyrolysis kinetics of CFO. Samples were heated in a TG-DTA apparatus in nitrogen atmosphere at a temperature range of 37-600°C. The activation energy (Ea) and pre-exponential factor (A) were calculated from the experimental results by using a three stage Arrhenius-type kinetic model and showed that CFO pyrolysis kinetics at temperature ranges 37-285, 320-450 and 467-600°C follows first, second and first order kinetics, respectively. Attentive to temperature increase and reaction progress, activation energy and pre-exponential factor indicated different values at each stage. Also, kinetics of the isothermal step of coke formation was studied during heating of CFO. Samples were reacted in a tube furnace at 450°C and with nitrogen atmosphere. The kinetics of coke formation for petroleum residue was followed by solvent extraction (insolubility in hexane (HI), toluene (TI)) and a development of TI approximate to apparent first order kinetics. The rate constant at this temperature was calculated and it was also observed that the coke formation had been started at a temperature below 450°C.



Sign in / Sign up

Export Citation Format

Share Document