scholarly journals Clean production of corn stover pulp using KOH+NH4OH solution and its kinetic during delignification

2012 ◽  
Vol 18 (2) ◽  
pp. 137-145 ◽  
Author(s):  
Yong Sun ◽  
Gang Yang ◽  
Jin-Ping Zhang ◽  
Ming-Shun Yao

The self-made KOH together with NH4OH pulping of corn stover was investigated. The combined alkaline system could effectively remove lignin during pulping. There are three stages of lignin removal during delginification. Approximately 90% of lignin could be removed after temperature reached 150?C for over 30 minutes. The p-hydroxyl phenol groups in lignin could be completely removed during the delignification reaction. The tendency of the increase of the crystalline degree of cellulose is observed with increase of reaction temperature. The kinetics of delignification is found to be the first order with respect to the remained lignin and the 0.4 order with respect to the remained hydroxide concentration. The activation energy of delignification is 23 kJ/mol. The solution obtained from precipitation of lignin is rich in nitrogen, phosphorous, potassium elements and organic matters. Various techniques including FT-IR, GPC, DSC, were applied to characterize the acid precipitated lignin. The result shows that the lignin with the polydispersity of 1.4 still maintains the p-coumaryl, coniferyl, and sinapyl units in its matrix.

2006 ◽  
Vol 3 (1) ◽  
pp. 38 ◽  
Author(s):  
Y.S. Al-Zeghayer ◽  
B.Y. Jibril

Kinetics of hydrodesulfurization of dibenzothiophene (DBT) has been studied on a commercial CoMo/γ-Al2O3 catalyst at 633 - 683 K and 10 atm. A low DBT concentration typically obtained in hydrodesulfurization operations was used. Pseudo-first-order model was found to fit the experimental data for the consumption of DBT. The activation energy for the conversion of DBT was found to be 51.7 kcal/mol. Biphenyl (BP) and cyclohexylbenzene (CHB) were obtained as dominant products. For the reaction network, both parallel and parallel-sequential routes were explored. The latter was found to give a better description of the BP and CHB distributions. The ratio of BP to CHB depended on the reaction temperature. The values of activation energies of DBT hydrogenolysis to BP (EBP), DBT hydrogenation to CHB (ECHB1) and hydrogenation of BP to CHB (ECHB2) were found to be in a decreasing order of ECHB2 > EBP > ECHB1. The result suggests the presence of different catalytic sites leading to the two products on the catalysts. 


BioResources ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. 4102-4117
Author(s):  
Shaoqing Wang ◽  
Xiaona Lin ◽  
Zhihe Li ◽  
Weiming Yi ◽  
Xueyuan Bai

Thermal decomposition characteristics and kinetics of high-density polyethylene (HDPE), corn stover (CS), and their blended mixture (1:1 w/w ratio) during non-catalytic and catalytic co-pyrolysis were studied via thermogravimetric analysis (TGA). The results indicated synergetic interactions between the biomass and the plastics during co-pyrolysis as measured by weight loss (ΔW); this effect was attributed to radical interactions during co-pyrolysis. The pyrolysis catalysts with higher nickel loadings (5%, 10%, and 15%) appreciably diminished the solid residue. Kinetic studies indicated that the pyrolysis was a first-order reaction based on the fitted thermogravimetric data. The activation energy (E) and pre-exponential factor (A) ranged between 26.13 kJ/mol to 392.67 kJ/mol and between 156.24 min-1 to 9.19 x 1023 min-1, respectively. There was a kinetic compensation effect (KCE) observed among the two kinetic parameters. The activation energy (E) decreased for each pyrolysis stage with the presence of a catalyst. The results indicated that catalytic co-pyrolysis could provide great potential for reducing the pyrolysis energy input.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed S. Yahia ◽  
Ahmed S. Elzaref ◽  
Magdy B. Awad ◽  
Ahmed M. Tony ◽  
Ahmed S. Elfeky

Abstract Commercial Granulated Active Carbon (GAC) has been modified using 10 Gy dose Gamma irradiation (GAC10 Gy) for increasing its ability of air purification. Both, the raw and treated samples were applied for removing Chlorpyrifos pesticide (CPF) from ambient midair. Physicochemical properties of the two materials were characterized by Fourier Transform Infrared (FT-IR) and Raman spectroscopy. The phase formation and microstructure were monitored using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), supported with Energy-Dispersive X-ray (EDX). The Surface area measurement was detected using BET particle size prosometry. Obtained outcomes showed that, the maximum adsorption capacity, given by Langmuir equations, was greatly increased from 172.712 to 272.480 mg/g for GAC and GAC10 Gy, respectively, with high selectivity. The overall removal efficiency of GAC10 Gy was notably comparable to that of the original GAC-sorbent. The present study indicated that, gamma irradiation could be a promising technique for treating GAC and turned it more active in eliminating the pesticides pollutants from surrounding air. The data of equilibrium has been analyzed by Langmuir and Freundlich models, that were considerably better suited for the investigated materials than other models. The process kinetics of CPF adsorbed onto both tested carbon versions were found to obey the pseudo first order at all concentrations with an exception at 70 mg/l using GAC, where, the spontaneous exothermic adsorption of Chlorpyrifos is a strong function for the pseudo-first order (PFO) and pseudo second order (PSO) kinetics.


1960 ◽  
Vol 33 (2) ◽  
pp. 335-341
Author(s):  
Walter Scheele ◽  
Karl-Heinz Hillmer

Abstract As a complement to earlier investigations, and in order to examine more closely the connection between the chemical kinetics and the changes with vulcanization time of the physical properties in the case of vulcanization reactions, we used thiuram vulcanizations as an example, and concerned ourselves with the dependence of stress values (moduli) at different degrees of elongation and different vulcanization temperatures. We found: 1. Stress values attain a limiting value, dependent on the degree of elongation, but independent of the vulcanization temperature at constant elongation. 2. The rise in stress values with the vulcanization time is characterized by an initial delay, which, however, is practically nonexistent at higher temperatures. 3. The kinetics of the increase in stress values with vulcanization time are both qualitatively and quantitatively in accord with the dependence of the reciprocal equilibrium swelling on the vulcanization time; both processes, after a retardation, go according to the first order law and at the same rate. 4. From the temperature dependence of the rate constants of reciprocal equilibrium swelling, as well as of the increase in stress, an activation energy of 22 kcal/mole can be calculated, in good agreement with the activation energy of dithiocarbamate formation in thiuram vulcanizations.


2019 ◽  
Vol 97 (11) ◽  
pp. 795-804 ◽  
Author(s):  
Dong Xiang ◽  
Weihua Zhu

The density functional tight-binding molecular dynamics approach was used to study the mechanisms and kinetics of initial pyrolysis and combustion reactions of isolated and multi-molecular FOX-7. Based on the thermal cleavage of bridge bonds, the pyrolysis process of FOX-7 can be divided into three stages. However, the combustion process can be divided into five decomposition stages, which is much more complex than the pyrolysis reactions. The vibrations in the mean temperature contain nodes signifying the formation of new products and thereby the transitions between the various stages in the pyrolysis and combustion processes. Activation energy and pre-exponential factor for the pyrolysis and combustion reactions of FOX-7 were obtained from the kinetic analysis. It is found that the activation energy of its pyrolysis and combustion reactions are very low, making both take place fast. Our simulations provide the first atomic-level look at the full dynamics of the complicated pyrolysis and combustion process of FOX-7.


2017 ◽  
Vol 23 (4) ◽  
pp. 495-506 ◽  
Author(s):  
Larissa Falleiros ◽  
Bruna Cabral ◽  
Janaína Fischer ◽  
Carla Guidini ◽  
Vicelma Cardoso ◽  
...  

The immobilization and stabilization of Aspergillus oryzae ?-galactosidase on Duolite??A568 was achieved using a combination of physical adsorption, incubation step in buffer at pH 9.0 and cross-linking with glutaraldehyde and in this sequence promoted a 44% increase in enzymatic activity as compared with the biocatalyst obtained after a two-step immobilization process (adsorption and cross-linking). The stability of the biocatalyst obtained by three-step immobilization process (adsorption, incubation in buffer at pH 9.0 and cross-linking) was higher than that obtained by two-steps (adsorption and cross-linking) and for free enzyme in relation to pH, storage and reusability. The immobilized biocatalyst was characterized with respect to thermal stability in the range 55-65 ?C. The kinetics of thermal deactivation was well described by the first-order model, which resulted in the immobilized biocatalyst activation energy of thermal deactivation of 71.03 kcal/mol and 5.48 h half-life at 55.0 ?C.


2001 ◽  
Vol 36 (3) ◽  
pp. 589-604 ◽  
Author(s):  
Julian M. Dust ◽  
Christopher S. Warren

Abstract The kinetics of the alkaline rearrangement of O,O-dimethyl-(2,2,2-trichloro-1- hydroxyethyl)phosphonate, (trichlorfon, 1), the active insecticidal component in such formulations as Dylox, was followed at 25±0.5°C by high pressure liquid chromatography (UV-vis detector, 210 nm). The rearrangement product, O,Odimethyl- O-(2,2-dichloroethenyl)phosphate (dichlorovos, 2), which is a more potent biocide than trichlorfon, undergoes further reaction, and the kinetics, consequently, cannot be treated by a standard pseudo-first-order plot. A two-point van't Hoff (initial rates) method was used to obtain pseudo-first-order rate constants (kѱ) at 25, 35 and 45°C: 2.6 × 10-6, 7.4 × 10-6 and 2.5 × 10-5 s-1, respectively. Arrhenius treatment of this data gave an activation energy (Ea) of 88 kJ·mol-1 with a pre-exponential factor (A) of 5.5 × 109 s-1. Kinetic trials at pH 8.0 using phosphate and tris buffer systems show no buffer catalysis in this reaction and indicate that the rearrangement is subject to specific base catalysis. Estimates are reported for pseudo-first-order half-lives for trichlorfon at pH 8.0 for environmental conditions in aqueous systems in the Corner Brook region of western Newfoundland, part of the site of a recent trichlorfon aerial spray program.


1950 ◽  
Vol 28b (7) ◽  
pp. 358-372
Author(s):  
Cyrias Ouellet ◽  
Adrien E. Léger

The kinetics of the polymerization of acetylene to cuprene on a copper catalyst between 200° and 300 °C. have been studied manometrically in a static system. The maximum velocity of the autocatalytic reaction shows a first-order dependence upon acetylene pressure. The reaction is retarded in the presence of small amounts of oxygen but accelerated by preoxidation of the catalyst. The apparent activation energy, of about 10 kcal. per mole for cuprene growth between 210° and 280 °C., changes to about 40 kcal. per mole above 280 °C. at which temperature a second reaction seems to set in. Hydrogen, carbon monoxide, or nitric oxide has no effect on the reaction velocity. Series of five successive seedings have been obtained with cuprene originally grown on cuprite, and show an effect of aging of the cuprene.


1969 ◽  
Vol 114 (4) ◽  
pp. 719-724 ◽  
Author(s):  
Charles Phelps ◽  
Eraldo Antonini

1. Static titrations reveal an exact stoicheiometry between various haem derivatives and apoperoxidase prepared from one isoenzyme of the horseradish enzyme. 2. Carbon monoxide–protohaem reacts rapidly with apoperoxidase and the kinetics can be accounted for by a mechanism already applied to the reaction of carbon monoxide–haem derivatives with apomyoglobin and apohaemoglobin. 3. According to this mechanism a complex is formed first whose combination and dissociation velocity constants are 5×108m−1sec.−1 and 103sec.−1 at pH9·1 and 20°. The complex is converted into carbon monoxide–haemoprotein in a first-order process with a rate constant of 235sec.−1 for peroxidase and 364sec.−1 for myoglobin at pH9·1 and 20°. 4. The effects of pH and temperature were examined. The activation energy for the process of complex-isomerization is about 13kcal./mole. 5. The similarity in the kinetics of the reactions of carbon monoxide–haem with apoperoxidase and with apomyoglobin suggests structural similarities at the haem-binding sites of the two proteins.


2011 ◽  
Vol 233-235 ◽  
pp. 481-486
Author(s):  
Wen Bo Zhao ◽  
Ning Zhao ◽  
Fu Kui Xiao ◽  
Wei Wei

The synthesis of dimethyl carbonate (DMC) from urea and methanol includes two main reactions: one amino of urea is substituted by methoxy to produce the intermediate methyl carbamate (MC) which further converts to DMC via reaction with methanol again. In a stainless steel autoclave, the kinetics of these reactions was separately investigated without catalyst and with Zn-containing catalyst. Without catalyst, for the first reaction, the reaction kinetics can be described as first order with respect to the concentrations of methanol and methyl carbamate (MC), respectively. For the second reaction, the results exhibit characteristics of zero-order reaction. Over Zn-containing catalyst, the first reaction is neglected in the kinetics model since its rate is much faster than second reaction. After the optimization of reaction condition, the macro-kinetic parameters of the second reaction are obtained by fitting the experimental data to a pseudo-homogenous model, in which a side reaction of DMC synthesis is incorporated since it decreases the yield of DMC drastically at high temperature. The activation energy of the reaction from MC to DMC is 104 KJ/mol while that of the side reaction of DMC is 135 KJ/mol.


Sign in / Sign up

Export Citation Format

Share Document