scholarly journals Application of corncob residue-derived catalyst in the transesterification of glycerol with dimethyl carbonate to synthesize glycerol carbonate

BioResources ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 142-158 ◽  
Author(s):  
Song Wang ◽  
Jianye Wang ◽  
Patrick U. Okoye ◽  
Shuang Chen ◽  
Xinshu Li ◽  
...  

Corncob was calcined within a temperature range of 300 °C to 700 °C to prepare a series of corncob residue catalysts for the transesterification of glycerol with dimethyl carbonate (DMC) to synthesize glycerol carbonate (GC). Among the catalysts, the corncob residue catalyst obtained through calcination of corncob at 500 °C (CCR-500) showed a relatively high basicity and satisfactory catalytic activity. The structural investigation results indicated that CCR-500 was composed of carbon material and some alkaline mineral salts. Using CCR-500 as the catalyst, a glycerol conversion of 98.1% and a GC yield of 94.1% were achieved when the reaction was performed at 80 °C for 90 min, with a catalyst amount of 3 wt% and glycerol to DMC molar ratio of 1:3. The comparison of CCR-500 with the reported catalysts indicated that the CCR-500 was a low-cost, high-active, and easily-accessible catalyst for the transesterification of glycerol with DMC.

2020 ◽  
Vol 26 (4) ◽  
pp. 202-211
Author(s):  
Shafaa Dhyaa Mohamed ◽  
Muthana J. Ahmed

Biodiesel production process was attracted more attention recently due to the surplus quantity of glycerol (G) as a byproduct from the process. Glycerol Utilization must take in to consideration to fix this issue also, to ensure biodiesel industry sustainability. Highly amount of Glycerol converted to more benefit material Glycerol carbonate (GC) was one of the most allurement compound derived from glycerol by transesterification of glycerol with dimethyl carbonate (DMC). Various parameters have highly impact on transesterification was investigated like catalyst loading (1-5) %wt., molar ratio of DMC: glycerol (5:1 – 1:1), reaction time (30 - 150) min and temperature (40 – 80) ᴼC. The Optimum glycerol carbonate yield (YGC) and glycerol conversion (XG) was obtained 94.2% and 94.5% respectively at catalyst loading 5% wt., temperature 70ᴼC, DMC:G ratio 5:1 and 120 min. GC has large scale of uses such as liquid membrane in gas separation, surfactants ,detergents , blowing agent , in plastics industry, in  Pharmaceutical industry and electrolytes in lithium batteries.


2018 ◽  
Vol 192 ◽  
pp. 03045 ◽  
Author(s):  
Wanichaya Praikaew ◽  
Worapon Kiatkittipong ◽  
Kunlanan Kiatkittipong ◽  
Navadol Laosiripojana ◽  
Navin Viriya-empikul ◽  
...  

Waste eggshell is proposed as a highly active catalyst for glycerol carbonate production from dimethyl carbonate (DMC) and glycerol. The effect of reaction temperature, reaction time and catalyst loading on the reaction performance were investigated in order to find a suitable operating condition. CaO derived from waste eggshell exhibits catalytic activity comparable to commercial CaO. By using CaO eggshell, glycerol conversion of 96% can be achieved within 90 min of reaction time under 2.5:1 feed molar ratio of DMC to glycerol, 0.08 mole ratio of CaO to glycerol and reaction temperature of 60°C. The catalyst was examined by XRD, TGA/DSC, SEM, N2 adsorption-desorption and Hammett indicators method. Utilization of eggshell as a catalyst for glycerol carbonate production not only provides a cost-effective and value-added of waste eggshell as a green catalyst, but also decrease amount of waste and its treatment cost which is ecologically friendly.


2014 ◽  
Vol 1008-1009 ◽  
pp. 319-322
Author(s):  
Gong De Wu ◽  
Xiao Li Wang ◽  
Zhi Li Zhai ◽  
Ao Yun Cao

The Mg-Al mixed oxides were deposited on the MCM-41 via the coprecipitation followed by thermal decomposition and characterized by many techniques. In the transesterification of glycerol (GL) with dimethyl carbonate (DMC), the resulting supported catalysts exhibited much higher catalytic performance than the pure Mg-Al mixed oxides, which was ascribed to the increased basicity. Under the optimal reaction conditions, the obtained data showed that at DMC/glycerol molar ratio of 3:1, catalyst loading of 0.3 g and reaction temperature of 373 K, the glycerol conversion and glycerol carbonate yield from the process was 98.7 % and 92.5%, respectively.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4355
Author(s):  
Guanhao Liu ◽  
Jingyi Yang ◽  
Xinru Xu

Ca-Mg-Al hydrotalcites were prepared by coprecipitation from Type S95 steel slag of Shanghai Baosteel Group as supports of ionic liquid in this paper. Five basic ionic liquids [Bmim][CH3COO], [Bmim][HCOO], [Bmim]OH, [Bmim]Br and ChOH were prepared and their catalytic performance on the synthesis of glycerol carbonate by transesterification between dimethyl carbonate and glycerol was investigated. The characterization results indicated that [Bmim]OH is the best ionic liquid (IL) for the transesterification reaction of glycerol carbonate. The hydrotalcites before and after intercalation by ionic liquid were characterized by XRD, FTIR, SEM, EDS and the IL were characterized by FT-IR, 13C-NMR and basicity determination via the Hammett method. The analysis results implied that the dispersion of [Bmim]OH in hydrotalcites reduced the alkali density appropriately and facilitated the generation of glycerol carbonate. The yield of glycerol carbonate and the conversion rate of glycerol reached 95.0% and 96.1%, respectively, when the molar ratio of dimethyl carbonate and glycerol was 3:1, the catalyst dosage was 3 wt%, the reaction temperature was 75 °C and the reaction time was 120 min. The layered structure of hydrotalcites increased the stability of ionic liquid intercalated in carriers, thus the glycerol conversion and the GC yield still remained 91.9% and 90.5% in the fifth reaction cycle.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jianye Wang ◽  
Zhu Wang ◽  
Haifeng Liu ◽  
Song Wang ◽  
Yifeng Sun

Na2CO3 was loaded onto waste carbide slag (CS) by impregnation-calcination method to prepare the solid base catalyst, which was used to synthesize glycerol carbonate (GC) by the transesterification of glycerol with dimethyl carbonate (DMC). The prepared catalysts were characterized by a scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Brunner−Emmet−Teller (BET) techniques. The catalyst 15 wt.% Na2CO3-CS-800, which was prepared by impregnating CS to the Na2CO3 solution with the concentration of 15 wt.% weight of CS and calcined at 800°C for 3 hours, showed an excellent catalytic ability. When it was applied in the catalytic synthesis of GC, 98.1% glycerol conversion and 96.0% GC yield were achieved in 90 mins at 75°C with the catalyst dosage of 3 wt.% to total reactants and the DMC to glycerol molar ratio of 5. More importantly, the loading of Na2CO3 can effectively improve the reusability of catalyst. The 15 wt.% Na2CO3-CS-800 can still achieve 83.6% glycerol conversion and 80.5% GC yield after five-time reuse. Meanwhile, under the same reaction conditions, the CS-800, which was obtained by calcining CS at 800°C for 3 hours, experienced significant activity reduction with only 15.2% glycerol conversion and 14.1% GC yield after five-time reuse. FTIR and XRD characterization revealed that CO32- might play a key role in preserving active catalytic CaO component by forming protective CaCO3 shell on the catalyst surface.


Author(s):  
Oscar Felipe Arbeláez-Pérez ◽  
Sara Dominguez Cardozo ◽  
Andrés Felipe Orrego-Romero ◽  
Aida Luz Villa Holguin ◽  
Felipe Bustamante Londoño

The catalytic activity for dimethyl carbonate formation from carbon dioxide and methanol over mono and bimetallic Cu:Ni supported on activated carbon is presented. Bimetallic catalysts exhibit higher catalytic activity than the monometallic samples, being Cu:Ni-2:1 (molar ratio) the best catalyst; X-Ray diffraction, transmission electron microscopy, and metal dispersion analysis provided insight into the improved activity. In situ FT-IR experiments were conducted to investigate the mechanism of formation of dimethyl carbonate from methanol and carbon dioxide over Cu-Ni:2-1. The kinetics of the direct synthesis of dimethyl carbonate in gas phase over Cu:Ni-2:1 supported on activated carbon catalyst was experimentally investigated at 12 bar and temperatures between 90 oC and 130 oC, varying the partial pressures of CO2 and methanol. Experimental kinetic data were consistent with a Langmuir–Hinshelwood model that included carbon dioxide and methanol adsorption on catalyst actives sites (Cu, Ni and Cu-Ni), and the reaction of adsorbed CO2 with methoxi species as the rate determining step. The estimated apparent activation energy was 94.2 kJ mol-1.


2019 ◽  
Vol 84 (6) ◽  
pp. 609-622
Author(s):  
Lanlan Xu ◽  
Song Wang ◽  
Patrick Okoye ◽  
Jianye Wang ◽  
Sanxi Li ◽  
...  

Water glasses with different modulus (mole ratio of SiO2 to Na2O) were applied as a raw material to prepare five solid base catalysts for the synthesis of glycerol carbonate (GC) by the transesterification reaction between glycerol and dimethyl carbonate (DMC). The structure and properties of the five water glass-derived catalysts were investigated by XRD, FT-IR, FESEM, BET and acid?base titration methods. The catalysts with relatively low modulus, including 1.0, 1.5 and 2.0, presented good catalytic abilities, among which the catalyst derived from water glass with 2.0 modulus (WG-2.0) was chosen as the optimal catalyst in the synthesis of GC. This was because WG- -2.0 showed the highest BET surface area, relatively high total basicity, and needed a less amount of NaOH during the preparation process. In the optimization experiments, this catalyst exhibited good catalytic ability with the glycerol conversion of 96.3 % and GC yield of 94.1 % under the condition of glycerol to DMC mole ratio of 1:4, WG-2.0 amount of 4 wt. %, reaction temperature of 348 K and reaction time of 90 min. Furthermore, the reusability experiment of WG-2.0 was also conducted and the results indicated that WG- -2.0 could be reused five times without significant reduction in its catalytic ability.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1307
Author(s):  
Guanhao Liu ◽  
Jingyi Yang ◽  
Xinru Xu

β-cyclodextrin derivative intercalated MgAl-hydrotalcites (β-CD-Ca/LDH) was synthesized to convert glycerol into high value-added glycerol carbonate(GC) by transesterification of dimethyl carbonate (DMC) and glycerol in this paper. β-cyclodextrin-metal complexes and β-CD-Ca/LDH was characterized by XRD, FT-IR, SEM, XPS and nitrogen adsorption-desorption. The enrichment of organic reactants in the hydrophobic cavity of β-cyclodextrin improved the collision probability of reactants. The intercalation of β-cyclodextrin-calcium complex (β-CD-Ca) increased the pore size and basic strength of catalyst. The experiment results showed that the glycerol conversion was 93.7% and the GC yield was 91.8% catalyzed by β-CD-Ca/LDH when the molar ratio of DMC and glycerol was 3:1, the catalyst dosage was 4 wt.%, the reaction temperature was 75 °C and the reaction time was 100 min while the glycerol conversion was 49.4% and the GC yield was 48.6% catalyzed by MgAl-LDH under the same conditions.


2019 ◽  
Vol 62 (4) ◽  
Author(s):  
Venkatesh Venkatesh ◽  
Mohamed Shamshuddin Sathgatta Zaheeruddin ◽  
Pratap Srinivasa Raghavendra

Abstract. Solid base catalysts such as Ceria-Zirconia-Magnesia with different mole ratio of magnesium were prepared by impregnation method and characterized by CO2-TPD, PXRD, FT-IR and ICP-OES analysis. The catalytic activity of the catalysts was tested in the liquid phase transesterification of glycerol with dimethyl carbonate to synthesise glycerol carbonate. Optimization of reaction condition was carried out by varying the molar ratio of the reactants, temperature and time. The highest yield (97 %) of glycerol carbonate was obtained at a reactant molar ratio of 1:3 at 120 °C in 6 h. Study of reusability and reactivation of solid base catalyst was also taken up. A suitable base catalysed mechanism for the formation of glycerol carbonate is proposed.Resumen. Se prepararon catalizadores de base sólida como Ceria-Zirconia-Magnesia con diferentes proporciones molares de magnesio mediante el método de impregnación y se caracterizaron por análisis de CO2-TPD, PXRD, FT-IR e ICP-OES. La actividad catalítica de los catalizadores se probó en la transesterificación en fase líquida de glicerol con carbonato de dimetilo para sintetizar carbonato de glicerol. La optimización de las condiciones de reacción se llevó a cabo variando la relación molar de los reactivos, la temperatura y el tiempo. El mayor rendimiento (97 %) de carbonato de glicerol se obtuvo a una relación molar reactiva de 1:3 a 120 °C en 6 h. También se realizó un estudio de la reutilización y reactivación del catalizador de base sólida. Se propone un mecanismo catalítico básico adecuado para la formación de carbonato de glicerol.


2021 ◽  
Vol 945 (1) ◽  
pp. 012038
Author(s):  
Janice Sheow Tung Liew ◽  
Siew Yong Leong ◽  
Po Kim Lo

Abstract Valorisation of crude glycerol has gained much interest in the industry associated with the surplus of crude glycerol caused by the increase usage of biodiesel. Transesterification of crude glycerol using a heterogenous base catalyst is one of the effective ways to utilize the additional glycerol. Seawater clams commonly serve as a food source to us and the waste shells are a source of calcium carbonate that is abundantly available and can be converted into a heterogenous base catalyst for the transesterification process. Therefore, this study focuses on the utilization of catalyst synthesized from a species of seawater clam, Paratapes Undulatus in a transesterification reaction using crude glycerol (C.GLY) as a reactant together with dimethyl carbonate (DMC) to synthesize glycerol carbonate (GLYC). The catalysts are characterized using Field Emission Scanning Electron Microscope (FESEM), Attenuated Total Reflectance (ATR), Thermogravimetric Analysis (TGA), X-ray diffraction (XRD) and Particle Size Analyser (PSA). The product is characterized using Gas Chromatography (GC-FID). The performance of the synthesized shell catalyst with different calcination condition was studied. The reaction using the calcined shell catalyst is carried out at 75°C, molar ratio of 2 and 2wt% of catalyst for 1 hour. The catalyst that has the best performance is the shell catalyst that is calcined for 3h, which give the yield of 54.16%.


Sign in / Sign up

Export Citation Format

Share Document