scholarly journals Phytomanagement of a chromium-contaminated soil by a high-value plant: Phytostabilization of heavy metal contaminated site

BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3545-3565
Author(s):  
Li-Li Ye ◽  
Yong-Shan Chen ◽  
Yu-Dao Chen ◽  
Lian-Wen Qian ◽  
Wen-Li Xiong ◽  
...  

Phytoremediation of metal-contaminated soil can be an eco-friendly technology. However, relatively long cultivation times impedes its popularization on a commercial scale. This study evaluated the effectiveness of lavender plants (Lavandula dentata L.) to remediate a highly chromium (Cr)-contaminated site through a pot experiment. The lavender growing soil was mixed both with and without biochar (2.5% w/w) + oyster shell waste (2.5% w/w) and biochar (2.5% w/w) + citrus peel waste (2.5% w/w). The results indicated that Cr(VI) accounted for 19.0% to 4.7% of the total soil Cr, while Cr(III) accounted for 81.0% to 95.3%, from the beginning to the end of the cultivation. The water-soluble Cr concentration decreased from 44.6 mg/kg to 7.5 mg/kg. The biomass of the lavender growing in the contaminated soil decreased by factors in the range between 4-fold and 6-found.The addition of soil amendments significantly reduced the (potential) bioavailable Cr (p < 0.05) in the range of 2 to 3 fold, consequently improving the growth of lavender in the highly toxic soil. In addition, the soil amendments significantly reduced the Cr bioaccumulation and the translocation from the roots to the shoots. These results showed that the cultivation of lavender with suitable amendments can effectively be used for phytomanagement techniques in highly contaminated soil.

2014 ◽  
Vol 641-642 ◽  
pp. 1141-1145 ◽  
Author(s):  
Hong Li Huang ◽  
Lin Luo ◽  
Jia Chao Zhang ◽  
Pu Feng Qin ◽  
Man Yu ◽  
...  

Pot experiments were performed to investigate the effect of compost amendment on the mobility of zinc through analysis of Zn fractions in heavy metal contaminated soil. The results showed that the total Zn concentration decreased 8.11%, 10.15%, 16.15%, 20.05%, 7.28% and 5.02% after the amendment of 0, 20, 40, 60, 80, 100 g/kg compost to soil and Brassica juncea harvest, respectively. Zn was mostly concentrated in the residual fraction and Fe-Mn oxides fraction in soil. The percentage of Zn in water-soluble fraction, organic fraction and residual fraction had no correlation with the amount of compost amendment. The percentage of Zn in the exchangeable fraction decreased and the percentage of Zn in Fe-Mn oxides fractions increased obviously. Furthermore, the mobility factor of Zn decreased significantly from 19.20% without compost amendment to 19.09%, 18.70%, 18.15%, 16.45% and 16.12% after the amendment of 0, 20, 40, 60, 80, 100 g/kg compost to soil, the compost amendment could lowered the mobility and phytotoxicity of zinc through bound to Fe-Mn oxides.


2014 ◽  
Vol 1030-1032 ◽  
pp. 344-347 ◽  
Author(s):  
Hong Li Huang ◽  
Lin Luo ◽  
Jia Chao Zhang ◽  
Jiao Lian Jiang

Pot experiments were carried out to study the effect of compost application amount on the distribution of copper in heavy metal contaminated soil. The results showed that the total Cu content reduced 11.54%, 11.60%, 22.02%, 25.27%, 7.08% and 3.65% after the amendment of 0, 20, 40, 60, 80, 100 g/kg compost to soil with Brassica juncea, respectively. The amount of water-soluble fraction had no correlation with the compost application amount. However, compost amendment decreased the proportion of Cu in the exchangeable and residual fractions, and increased the percentage of Cu in the carbonate bound, Fe-Mn oxide bound and organic-bound Cu. Furthermore, though the mobility factor of Cu decreased slightly only from 16.64% to 16.27-16.52% due to the addition of compost, the addition of compost to soil can immobilize the heavy metal through bound to organic matter and therefore, lowered their mobility and their phytotoxicity.


Toxics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 102
Author(s):  
Fayuan Wang ◽  
Shuqi Zhang ◽  
Peng Cheng ◽  
Shuwu Zhang ◽  
Yuhuan Sun

Soil amendments have been proposed for immobilizing metallic contaminants, thus reducing their uptake by plants. For the safe production of crops in contaminated soil, there is a need to select suitable amendments that can mitigate heavy metal uptake and enhance crop yield. The present experiment compared the effects of three amendments, hydroxyapatite (HAP), organic manure (OM), and biochar (BC), on plant growth and heavy metal accumulation by maize in an acidic soil contaminated with Cd, Pb, and Zn, and their potential for safe crop production. Toxicity characteristic leaching procedure (TCLP) tests, energy dispersive X-ray spectroscopy (EDS) analysis, and X-ray diffraction (XRD) analysis were used to evaluate the effectiveness and mechanisms of heavy metal immobilization by the amendments. The results showed that shoot and root biomass was significantly increased by HAP and 1% OM, with an order of 1% HAP > 0.1% HAP > 1% OM, but not changed by 0.1% OM and BC (0.1% and 1%). HAP significantly decreased Cd, Pb, and Zn concentrations in both shoots and roots, and the effects were more pronounced at the higher doses. OM decreased the shoot Cd and Pb concentrations and root Zn concentrations, but only 1% OM decreased the shoot Zn and root Pb concentrations. BC decreased the shoot Cd and Pb concentrations, but decreased the shoot Zn and root Pb concentrations only at 1%. HAP decreased the translocation factors (TFs) of Cd, Pb, and Zn (except at the 0.1% dose). OM and BC decreased the TFs of Cd and Zn, respectively, at the 1% dose but showed no significant effects in other cases. Overall, plant P, K, Fe, and Cu nutrition was improved by HAP and 1% OM, but not by 0.1 OM and BC. Soil pH was significantly increased by HAP, 1% OM, and 1% BC, following an order of 1% HAP > 1% OM > 0.1% HAP > 1% BC. The TCLP levels for Cd, Pb, and Zn were significantly reduced by HAP, which can be partly attributed to its liming effects and the formation of sparingly soluble Cd-, Pb-, and Zn-P-containing minerals in the HAP-amended soils. To some extent, all the amendments positively influenced plant and soil traits, but HAP was the optimal one for stabilizing heavy metals, reducing heavy metal uptake, and promoting plant growth in the contaminated soil, suggesting its potential for safe crop production.


2007 ◽  
Vol 24 (7) ◽  
pp. 897-904 ◽  
Author(s):  
René van Herwijnen ◽  
Abir Al-Tabbaa ◽  
Tony R. Hutchings ◽  
Andy J. Moffat ◽  
Sabeha K. Ouki ◽  
...  

2015 ◽  
Vol 17 (3) ◽  
pp. 544-554 ◽  

<div> <p>Antioxidant defense mechanisms are crucial for plants to survive under stress conditions. We investigated the capacity of a wild fern species, <em>Nephrolepis biserrata,</em> growing in the vicinity of industrial land to accumulate heavy metals, and assessed its antioxidative response under metal stress. The soils in this particular area were highly contaminated with zinc followed by lead and copper. As control, <em>N. biserrata</em> located 10 km away from the industrial area were collected and assessed. <em>N. biserrata</em> from the contaminated sites accumulated metals in their tissues in similar descending order of zinc&gt;lead&gt;copper. The values of bioaccumulation factor between 0 to 0.1 indicate <em>N. biserrata</em> as a moderate accumulator for the tested metals. For the enzymatic antioxidant assays, the activities of catalase and ascorbate peroxidase were significantly higher in <em>N. biserrata</em> from contaminated soil compared to control, while the activity of superoxide dismutase was not differ significantly in plants from both sites. We also detected higher contents of total phenolics and total flavonoids in <em>N. biserrata</em> collected from contaminated site compared to control. Our HPLC analysis revealed higher levels of myricetin and kaempferol in plant samples from the contaminated area. Our study verified the capacity of <em>N. biserrata</em> to scavenge oxygen radicals when exposed to heavy metal stress. Such ability to tolerate stressful condition suggests that the plant is a potential metal phytoremediator.&nbsp;</p> </div> <p>&nbsp;</p>


2011 ◽  
Vol 414 ◽  
pp. 27-31
Author(s):  
An Ping Liu ◽  
Xiao Nan Sun ◽  
Fang Zhao ◽  
Xiao Song Sun ◽  
Wei Ren ◽  
...  

In the remediation of heavy metal contaminated site, determining the remediation boundary of contaminated site and amount of contaminated soil are important link of the entire work. This paper uses surfer software to draw out a picture of Pb-contamination distribution in different soil layers, determines a remediation boundary, and provides a reliable basis and brings great convenience for later repair work.


2012 ◽  
Vol 500 ◽  
pp. 24-28 ◽  
Author(s):  
Xiao Nan Sun ◽  
An Ping Liu ◽  
Xiao Song Sun

In this paper, a portable X-ray fluorescence (XRF) is designed to monitor the digging process of Pb contaminated soil based on contaminated site remediation. This field monitoring method is applied to the project of Pb contaminated restoration site K. A full time program is designed for XRF to monitor the exceeded standard regions of Pb pollution during the digging contaminated soil. The acceptance monitoring results show that the Pb concentration of all original exceeded points are under the limit value 260mg/kg, and reach the requirement of environmental protection. This application results show that the portable XRF was designed effectively in field monitoring on heavy metal such as Pb, which realize the purpose of quickly identification and digging of contaminated soil.


Sign in / Sign up

Export Citation Format

Share Document