Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil

2011 ◽  
Vol 196 ◽  
pp. 101-108 ◽  
Author(s):  
Young-Chul Lee ◽  
Eun Jung Kim ◽  
Dong Ah Ko ◽  
Ji-Won Yang
2014 ◽  
Vol 641-642 ◽  
pp. 1141-1145 ◽  
Author(s):  
Hong Li Huang ◽  
Lin Luo ◽  
Jia Chao Zhang ◽  
Pu Feng Qin ◽  
Man Yu ◽  
...  

Pot experiments were performed to investigate the effect of compost amendment on the mobility of zinc through analysis of Zn fractions in heavy metal contaminated soil. The results showed that the total Zn concentration decreased 8.11%, 10.15%, 16.15%, 20.05%, 7.28% and 5.02% after the amendment of 0, 20, 40, 60, 80, 100 g/kg compost to soil and Brassica juncea harvest, respectively. Zn was mostly concentrated in the residual fraction and Fe-Mn oxides fraction in soil. The percentage of Zn in water-soluble fraction, organic fraction and residual fraction had no correlation with the amount of compost amendment. The percentage of Zn in the exchangeable fraction decreased and the percentage of Zn in Fe-Mn oxides fractions increased obviously. Furthermore, the mobility factor of Zn decreased significantly from 19.20% without compost amendment to 19.09%, 18.70%, 18.15%, 16.45% and 16.12% after the amendment of 0, 20, 40, 60, 80, 100 g/kg compost to soil, the compost amendment could lowered the mobility and phytotoxicity of zinc through bound to Fe-Mn oxides.


2014 ◽  
Vol 1030-1032 ◽  
pp. 344-347 ◽  
Author(s):  
Hong Li Huang ◽  
Lin Luo ◽  
Jia Chao Zhang ◽  
Jiao Lian Jiang

Pot experiments were carried out to study the effect of compost application amount on the distribution of copper in heavy metal contaminated soil. The results showed that the total Cu content reduced 11.54%, 11.60%, 22.02%, 25.27%, 7.08% and 3.65% after the amendment of 0, 20, 40, 60, 80, 100 g/kg compost to soil with Brassica juncea, respectively. The amount of water-soluble fraction had no correlation with the compost application amount. However, compost amendment decreased the proportion of Cu in the exchangeable and residual fractions, and increased the percentage of Cu in the carbonate bound, Fe-Mn oxide bound and organic-bound Cu. Furthermore, though the mobility factor of Cu decreased slightly only from 16.64% to 16.27-16.52% due to the addition of compost, the addition of compost to soil can immobilize the heavy metal through bound to organic matter and therefore, lowered their mobility and their phytotoxicity.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3545-3565
Author(s):  
Li-Li Ye ◽  
Yong-Shan Chen ◽  
Yu-Dao Chen ◽  
Lian-Wen Qian ◽  
Wen-Li Xiong ◽  
...  

Phytoremediation of metal-contaminated soil can be an eco-friendly technology. However, relatively long cultivation times impedes its popularization on a commercial scale. This study evaluated the effectiveness of lavender plants (Lavandula dentata L.) to remediate a highly chromium (Cr)-contaminated site through a pot experiment. The lavender growing soil was mixed both with and without biochar (2.5% w/w) + oyster shell waste (2.5% w/w) and biochar (2.5% w/w) + citrus peel waste (2.5% w/w). The results indicated that Cr(VI) accounted for 19.0% to 4.7% of the total soil Cr, while Cr(III) accounted for 81.0% to 95.3%, from the beginning to the end of the cultivation. The water-soluble Cr concentration decreased from 44.6 mg/kg to 7.5 mg/kg. The biomass of the lavender growing in the contaminated soil decreased by factors in the range between 4-fold and 6-found.The addition of soil amendments significantly reduced the (potential) bioavailable Cr (p < 0.05) in the range of 2 to 3 fold, consequently improving the growth of lavender in the highly toxic soil. In addition, the soil amendments significantly reduced the Cr bioaccumulation and the translocation from the roots to the shoots. These results showed that the cultivation of lavender with suitable amendments can effectively be used for phytomanagement techniques in highly contaminated soil.


2016 ◽  
Vol 1 (01) ◽  
Author(s):  
Henggar Hardiani ◽  
Teddy Kardiansyah ◽  
Susi Sugesty

Sludge waste of deinking process as toxic and hazardous material from spesific source containing Pb metal from waste water soluble ink. According to regulation of Ministry of Environmental no.33/2009 that all the industries are mandatory to clean up contaminated soil from hazardous waste. Therefore this bioremediation research need to be conducted using consortium microbes. This research was conducted by applying variation of incubation 0 – 60 days and inoculum 5%, 10% and 15% (v/w). Key success parameter of bioremediation is transformation of metal from active to inactive phase in contaminated soil by microbial activity stated by deceases of soluble-exchangeable Pb and increases of residual Pb. The 1:1:1:1 consortium microbes of PG 65-06 (A) : PG 97-02 (B) : MR 1.12-05 (C) : A1 (D) reached an optimum condition with 10% inoculum and 40 days incubation indicated by decrease of coefficient distribution until 21% in soluble-exchangeable Pb from initial 19,36 mg/kg to 15,91 mg/kg and increase of coefficient distribution until 146% in residual Pb from initial 7,77 mg/kg to 17,00 mg/kg. Germination index value 84,3-136,7% means contaminated soil is not toxic to plants.Key words : bioremediation, soil contaminated, deinking waste paper industries, heavy metal PbABSTRAKLimbah sludge proses deinking sebagai B3 dari sumber spesifik karena mengandung logam Pb dari tinta yang larut dalam air limbah. Menurut Kep.Men. LH no. 33/2009 semua industri wajib melakukan pemulihan lahan tekontaminasi limbah B3. Oleh karena itu perlu dilakuan penelitian bioremediasi menggunakan mikroba konsorsium. Penelitian dilakukan dengan variasi waktu inkubasi dari 0 – 60 hari dan jumlah inokulum 5%, 10%, dan 15% (v/w). Keberhasilan bioremediasi adalah mengubah logam aktif dalam tanah menjadi tidak aktif oleh aktifitas mikroba, dinyatakan dengan penurunan nilai koefisien distribusi fase tertukarkan dan peningkaan fase residual Pb. Mikroba konsorsium PG 65-06 (A) : PG 97-02 (B) : MR 1.12-05 (C) : A1 (D) dengan perbandingan 1:1:1:1 menghasilkan kondisi optimum untuk penambahan inokulum 10% dan waktu inkubasi 40 hari dengan penurunan koefisien distribusi fase tertukarkan Pb sebesar 21% yang semula 19,3 mg/kg menjadi 15,91 mg/kg dan peningkatan fase residual Pb sebesar 146% yang semula 7,77 mg/kg menjadi 17,00 mg/kg. Nilai germination index pada kisaran 84,3-136,7% yang berarti tanah tersebut sudah tidak bersifat toksik pada tanaman.Kata kunci : bioremediasi, tanah terkontaminasi, limbah deinking industri kertas, logam berat Pb 


2019 ◽  
Vol 10 (3) ◽  
pp. 2132-2138
Author(s):  
Virsa Handayani ◽  
Rezki Amriati Syarif ◽  
Ahmad Najib ◽  
Aktsar Roskiana Ahmad ◽  
Abdullah Mahmud ◽  
...  

Mahogany (Swietenia mahagoni (L.) Jacq) is one of the plants that is often used by the community as traditional medicine. One of them is antifungal, antibacterial, antidiabetic, and eczema. This study aims to obtain standardized extracts from mahogany seeds and leaves. Standardization of purified extract of mahogany has been carried out according to the monographs of extract standardization guidelines, which include testing of specific and non-specific parameters. The results of the specific parameter testing showed that the purified extract of mahogany seeds is a thick extract, brown to reddish, smells distinctive and has a bitter taste. While the purified extract of mahogany leaves is a thick extract, greenish-brown in color, distinctive smell and has a bitter taste. The chemical content of purified extract of mahogany seeds and leaves showed the presence of flavonoids, alkaloids, terpenoids and saponins. Water-soluble essence levels in mahogany seeds and leaves was 14.84% and 10.28%. While the ethanol-soluble essence levels in mahogany seeds and leaves were 15.38% and 12.43%. Testing of non-specific parameters on mahogany seeds and leaves showed the results of drying shrinkage levels of 0.22% and 8.84%, moisture content of 2.60% and 4.04%, total ash content of 1.71% and 1.93%, levels acidic insoluble ash 0.38% and 0.32%, Total Plate Number (ALT) of mahogany seed bacteria 1x102 colonies/g, Number of mahogany mold seeds 4x10 colonies/g, heavy metal lead contamination and cadmium in mahogany seeds 0.0607µg/g and<0.003µg/g. The inhibitory diameter of each concentration of seeds against Escherichia coli, 3%, 5%, 7%, and 9%, is 12,67; 13,67; 17,67; and 19,67 mm, respectively. The inhibitory diameter of each concentration of leaves against Escherichia coli, 3%, 5%, 7%, and 9%, is 10,27; 10,90; 13,46; and 15,68 mm, respectively.


2020 ◽  
Vol 9 (1) ◽  
pp. 736-750
Author(s):  
Xilu Chen ◽  
Xiaomin Li ◽  
Dandan Xu ◽  
Weichun Yang ◽  
Shaoyuan Bai

AbstractChromium (Cr) is a common toxic heavy metal that is widely used in all kinds of industries, causing a series of environmental problems. Nanoscale zero- valent iron (nZVI) is considered to be an ideal remediation material for contaminated soil, especially for heavy metal pollutants. As a material of low toxicity and good activity, nZVI has been widely applied in the in situ remediation of soil hexavalent chromium (Cr(vi)) with mobility and toxicity in recent years. In this paper, some current technologies for the preparation of nZVI are summarized and the remediation mechanism of Cr(vi)-contaminated soil is proposed. Five classified modified nZVI materials are introduced and their remediation processes in Cr(vi)-contaminated soil are summarized. Key factors affecting the remediation of Cr(vi)-contaminated soil by nZVI are studied. Interaction mechanisms between nZVI-based materials and Cr(vi) are explored. This study provides a comprehensive review of the nZVI materials for the remediation of Cr(vi)-contaminated soil, which is conducive to reducing soil pollution.


Sign in / Sign up

Export Citation Format

Share Document