The Impact of Waste Compost-Based Soil Amendments on the Leaching Behavior of a Heavy Metal Contaminated Soil

2007 ◽  
Vol 24 (7) ◽  
pp. 897-904 ◽  
Author(s):  
René van Herwijnen ◽  
Abir Al-Tabbaa ◽  
Tony R. Hutchings ◽  
Andy J. Moffat ◽  
Sabeha K. Ouki ◽  
...  
Toxics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 102
Author(s):  
Fayuan Wang ◽  
Shuqi Zhang ◽  
Peng Cheng ◽  
Shuwu Zhang ◽  
Yuhuan Sun

Soil amendments have been proposed for immobilizing metallic contaminants, thus reducing their uptake by plants. For the safe production of crops in contaminated soil, there is a need to select suitable amendments that can mitigate heavy metal uptake and enhance crop yield. The present experiment compared the effects of three amendments, hydroxyapatite (HAP), organic manure (OM), and biochar (BC), on plant growth and heavy metal accumulation by maize in an acidic soil contaminated with Cd, Pb, and Zn, and their potential for safe crop production. Toxicity characteristic leaching procedure (TCLP) tests, energy dispersive X-ray spectroscopy (EDS) analysis, and X-ray diffraction (XRD) analysis were used to evaluate the effectiveness and mechanisms of heavy metal immobilization by the amendments. The results showed that shoot and root biomass was significantly increased by HAP and 1% OM, with an order of 1% HAP > 0.1% HAP > 1% OM, but not changed by 0.1% OM and BC (0.1% and 1%). HAP significantly decreased Cd, Pb, and Zn concentrations in both shoots and roots, and the effects were more pronounced at the higher doses. OM decreased the shoot Cd and Pb concentrations and root Zn concentrations, but only 1% OM decreased the shoot Zn and root Pb concentrations. BC decreased the shoot Cd and Pb concentrations, but decreased the shoot Zn and root Pb concentrations only at 1%. HAP decreased the translocation factors (TFs) of Cd, Pb, and Zn (except at the 0.1% dose). OM and BC decreased the TFs of Cd and Zn, respectively, at the 1% dose but showed no significant effects in other cases. Overall, plant P, K, Fe, and Cu nutrition was improved by HAP and 1% OM, but not by 0.1 OM and BC. Soil pH was significantly increased by HAP, 1% OM, and 1% BC, following an order of 1% HAP > 1% OM > 0.1% HAP > 1% BC. The TCLP levels for Cd, Pb, and Zn were significantly reduced by HAP, which can be partly attributed to its liming effects and the formation of sparingly soluble Cd-, Pb-, and Zn-P-containing minerals in the HAP-amended soils. To some extent, all the amendments positively influenced plant and soil traits, but HAP was the optimal one for stabilizing heavy metals, reducing heavy metal uptake, and promoting plant growth in the contaminated soil, suggesting its potential for safe crop production.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3545-3565
Author(s):  
Li-Li Ye ◽  
Yong-Shan Chen ◽  
Yu-Dao Chen ◽  
Lian-Wen Qian ◽  
Wen-Li Xiong ◽  
...  

Phytoremediation of metal-contaminated soil can be an eco-friendly technology. However, relatively long cultivation times impedes its popularization on a commercial scale. This study evaluated the effectiveness of lavender plants (Lavandula dentata L.) to remediate a highly chromium (Cr)-contaminated site through a pot experiment. The lavender growing soil was mixed both with and without biochar (2.5% w/w) + oyster shell waste (2.5% w/w) and biochar (2.5% w/w) + citrus peel waste (2.5% w/w). The results indicated that Cr(VI) accounted for 19.0% to 4.7% of the total soil Cr, while Cr(III) accounted for 81.0% to 95.3%, from the beginning to the end of the cultivation. The water-soluble Cr concentration decreased from 44.6 mg/kg to 7.5 mg/kg. The biomass of the lavender growing in the contaminated soil decreased by factors in the range between 4-fold and 6-found.The addition of soil amendments significantly reduced the (potential) bioavailable Cr (p < 0.05) in the range of 2 to 3 fold, consequently improving the growth of lavender in the highly toxic soil. In addition, the soil amendments significantly reduced the Cr bioaccumulation and the translocation from the roots to the shoots. These results showed that the cultivation of lavender with suitable amendments can effectively be used for phytomanagement techniques in highly contaminated soil.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 478 ◽  
Author(s):  
Yan Zhang ◽  
Hassan Baaj ◽  
Rong Zhao

Coal gangue can cause significant heavy metal pollution in mining areas, which would have a negative impact on the environment and human health. The objective of this research is to investigate the relationship between expansive soil amount and the leaching behavior of Chromium from coal gangue and the engineering properties of coal gangue used as building materials. The leaching behavior of Chromium from coal gangue was observed using atomic absorption spectrometry. A column leaching experiment was conducted to examine the impact of leaching time and heavy metal concentration. Furthermore, the unconfined compressive strength test was employed to evaluate the engineering properties of coal gangue with expansive soil. The results of the study demonstrate that pH of leachate solutions, leaching time, and expansive soil amounts in mixtures have important influence on Chromium concentration. The leachate solutions, which behave like alkaline, provide a positive environment for adsorbing Cr. Adding expansive soil can reduce leached concentrations of Chromium from coal gangue when compared to leachate of original coal gangue. It was found that 30% expansive soil was an improved solution because it delayed the cumulative concentration to reach the limitation line. Moreover, the unconfined compressive strength of coal gangue was boosted through adding expansive soil.


2020 ◽  
Vol 1 (2) ◽  
pp. 24-36
Author(s):  
T. B. Bello ◽  
O. M. Bolaji ◽  
F. A. Fakunle

Spent Engine oil (SEO) is a common environmental pollutant generated after engine services. Disposing SEO is a serious environmental issue in Nigeria as generators end up disposing it in water drain systems, rivers, open vacant plots and agricultural lands. Thus, the need to assess the impact of such disposal on environmental components becomes imperative.  Using a completely randomized design, a control and seven treatments of SEO (T0: 0 ml, T1: 5 ml, T2: 10 ml, T3: 15 ml, T4: 20 ml, T5: 25 ml, T6: 50 ml, T7: 75 ml) were applied to potted soil for cowpea planting. Plant height, leave number, yield, heavy metal load and hazard quotient were assessed. Baseline heavy metal analysis showed the SEO contained lead and cadmium at 0.003 mg/kg and 0.462 mg/kg respectively. There was significant reduction in plant height (T0: 50.72 cm, T3: 37.36 cm, T7:  24.33 cm), number of leaves (T0: 25.91, T3: 21.57, T7: 17.67), seed weight (T0: 24.40 g, T3: 16.38 g, T7: 5.03 g) and plant weight (T0: 171.60 g, T3: 136.60 g, T7: 54.70 g) in contaminated soil with increasing SEO concentration (P<0.05). Cowpea grown on contaminated soil accumulated cadmium in seeds (T0: 0.000 mg/kg, T3: 0.057 mg/kg, T7 0.119 mg/kg) and in roots (T0: 0.000 mg/kg, T3: 0.079 mg/kg, T7: 0.263 mg/kg) with hazard quotient ranging from 0.084 to 0.216. This study revealed that increasing environmental pollution through indiscriminate SEO increases the possibility of health risk by elevating hazard quotient and this should therefore be discouraged.


Author(s):  
V.V. Zinchenko ◽  
◽  
E.S Fedorenko ◽  
A.V Gorovtsov ◽  
T.M Minkina ◽  
...  

As a result of the model experiment, an increase in the enzymatic activity of meadow chernozem of the impact zone of Ataman Lake with the introduction of a strains mixture of metal-resistant microorganisms into the soil was established. The experiment has shown that the application of bacterial strains increases the dehydrogenase activity of contaminated soil by 51.8% compared to the variant without remediation


Sign in / Sign up

Export Citation Format

Share Document