Mobility of Zinc in Heavy Metal Contaminated Soil after Compost Amendment and Brassica juncea Harvest

2014 ◽  
Vol 641-642 ◽  
pp. 1141-1145 ◽  
Author(s):  
Hong Li Huang ◽  
Lin Luo ◽  
Jia Chao Zhang ◽  
Pu Feng Qin ◽  
Man Yu ◽  
...  

Pot experiments were performed to investigate the effect of compost amendment on the mobility of zinc through analysis of Zn fractions in heavy metal contaminated soil. The results showed that the total Zn concentration decreased 8.11%, 10.15%, 16.15%, 20.05%, 7.28% and 5.02% after the amendment of 0, 20, 40, 60, 80, 100 g/kg compost to soil and Brassica juncea harvest, respectively. Zn was mostly concentrated in the residual fraction and Fe-Mn oxides fraction in soil. The percentage of Zn in water-soluble fraction, organic fraction and residual fraction had no correlation with the amount of compost amendment. The percentage of Zn in the exchangeable fraction decreased and the percentage of Zn in Fe-Mn oxides fractions increased obviously. Furthermore, the mobility factor of Zn decreased significantly from 19.20% without compost amendment to 19.09%, 18.70%, 18.15%, 16.45% and 16.12% after the amendment of 0, 20, 40, 60, 80, 100 g/kg compost to soil, the compost amendment could lowered the mobility and phytotoxicity of zinc through bound to Fe-Mn oxides.

2014 ◽  
Vol 1030-1032 ◽  
pp. 344-347 ◽  
Author(s):  
Hong Li Huang ◽  
Lin Luo ◽  
Jia Chao Zhang ◽  
Jiao Lian Jiang

Pot experiments were carried out to study the effect of compost application amount on the distribution of copper in heavy metal contaminated soil. The results showed that the total Cu content reduced 11.54%, 11.60%, 22.02%, 25.27%, 7.08% and 3.65% after the amendment of 0, 20, 40, 60, 80, 100 g/kg compost to soil with Brassica juncea, respectively. The amount of water-soluble fraction had no correlation with the compost application amount. However, compost amendment decreased the proportion of Cu in the exchangeable and residual fractions, and increased the percentage of Cu in the carbonate bound, Fe-Mn oxide bound and organic-bound Cu. Furthermore, though the mobility factor of Cu decreased slightly only from 16.64% to 16.27-16.52% due to the addition of compost, the addition of compost to soil can immobilize the heavy metal through bound to organic matter and therefore, lowered their mobility and their phytotoxicity.


2016 ◽  
Vol 39 (1-2) ◽  
Author(s):  
Sadia Qayyum ◽  
Ibrar Khan ◽  
Yangguo Zhao ◽  
Farhana Maqbool ◽  
Changsheng Peng

AbstractMetal contamination of soil is due to mining, manufacturing and use of synthetic products (e.g. pesticides, paints, batteries, industrial waste and industrial or domestic sludge) which is a serious environmental problem. Hence, determining chemical forms of metals in soils is important to evaluate their mobility or bioavailability. Both artificial and contaminated soils were sequentially extracted to fractionate metals into the water soluble fraction (WSF), exchangeable fraction (EF), bound to carbonate fraction, bound to metal oxide fraction, organically bound fraction (OBF) and residual fraction (RF). In the case of contaminated soil, Pb and Cr are found to be associated with the carbonate fraction while in artificial soil, Pb bound to WSF and Cr with the Fe/Mn fraction. Chemical properties such as pH, electrical conductivity (EC) and textural classification of concerned soils were also analyzed. Percentage recovery was calculated to check the reliability of processes both in Pb and Cr, and it was found to be more in Cr (66% and 84%) in both artificial and contaminated soil than Pb (5% and 34%) in both soils. Analyses of extracts were carried out by atomic absorption spectrometry (AAS). Results were interpreted in terms of environmental mobility or bioavailability of metals.


2013 ◽  
Vol 671-674 ◽  
pp. 2613-2616
Author(s):  
Shu Fen Cheng ◽  
Yao Ting Tu ◽  
Chin Yuan Huang ◽  
Jia Rong Chen ◽  
Chi Ying Lai

Lead is a common pollutant found in soil. The characteristics of lead contaminated soil may vary depending on various sources of lead pollutants and different soils. In this research, samples were collected from soils contaminated by lead of different sources including discarded slag, lead smelting plant and gunnery firing range for conducting characteristic analyses. The samples were also subject to washing using seven different cleaning agents including acids such as HNO3 and HCl, cationic exchangers such as AlCl3, FeCl3, CaCl2 and MgCl2, as well chelating agent such as EDTA-4Na to study the efficiency of these agents of removing leads of various bindings in the contaminated soil. The results show that he most effective cleaning agents are HNO3, HCl, and EDTA-4Na, FeCl3 and AlCl3 for the exchangeable fraction of lead, HNO3, HCl and FeCl3 for carbonate bond fraction of lead, HNO3, HCl followed by EDTA-4Na and FeCl3 for Fe-Mn oxides bond fraction of lead; HNO3, HCl and FeCl3 for the organic bond fraction lead and HCl for the residual fraction of lead.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Masahiko Katoh ◽  
Wataru Kitahara ◽  
Takeshi Sato

This study aimed to identify how the ratio of inorganic-to-organic components in animal manure compost (AMC) affected both lead immobilization and microbial activity in lead-contaminated soil. When AMC containing 50% or more inorganic fraction with high phosphorous content was applied to contaminated soil, the amounts of water-soluble lead in it were suppressed by over 88% from the values in the soil without compost. The residual fraction under sequential extraction increased with the inorganic fraction in the AMC; however, in those AMCs, the levels of microbial enzyme activity were the same or less than those in the control soil. The application of AMC containing 25% inorganic fraction could alter the lead phases to be more insoluble while improving microbial enzyme activities; however, no suppression of the level of water-soluble lead existed during the first 30 days. These results indicate that compost containing an inorganic component of 50% or more with high phosphorus content is suitable for immobilizing lead; however, in the case where low precipitation is expected for a month, AMC containing 25% inorganic component could be used to both immobilize lead and restore microbial activity.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3545-3565
Author(s):  
Li-Li Ye ◽  
Yong-Shan Chen ◽  
Yu-Dao Chen ◽  
Lian-Wen Qian ◽  
Wen-Li Xiong ◽  
...  

Phytoremediation of metal-contaminated soil can be an eco-friendly technology. However, relatively long cultivation times impedes its popularization on a commercial scale. This study evaluated the effectiveness of lavender plants (Lavandula dentata L.) to remediate a highly chromium (Cr)-contaminated site through a pot experiment. The lavender growing soil was mixed both with and without biochar (2.5% w/w) + oyster shell waste (2.5% w/w) and biochar (2.5% w/w) + citrus peel waste (2.5% w/w). The results indicated that Cr(VI) accounted for 19.0% to 4.7% of the total soil Cr, while Cr(III) accounted for 81.0% to 95.3%, from the beginning to the end of the cultivation. The water-soluble Cr concentration decreased from 44.6 mg/kg to 7.5 mg/kg. The biomass of the lavender growing in the contaminated soil decreased by factors in the range between 4-fold and 6-found.The addition of soil amendments significantly reduced the (potential) bioavailable Cr (p < 0.05) in the range of 2 to 3 fold, consequently improving the growth of lavender in the highly toxic soil. In addition, the soil amendments significantly reduced the Cr bioaccumulation and the translocation from the roots to the shoots. These results showed that the cultivation of lavender with suitable amendments can effectively be used for phytomanagement techniques in highly contaminated soil.


2021 ◽  
Author(s):  
Teodoro Miano ◽  
Donato Mondelli ◽  
Lea Piscitelli ◽  
Hana Voca ◽  
Valeria D'Orazio

&lt;p&gt;Mitrovica area (northern Kosovo) presents contamination by PTE in agricultural soils caused by smelter emissions and their transfer and accumulation in cultivated plants. Soil A and B, sampled from two sites in Mitrovica municipality, showed a total content of Pb and Zn of 2153 and 3087 mg kg&lt;sup&gt;-1&lt;/sup&gt;, and 3214 and 4619 mg kg&lt;sup&gt;-1&lt;/sup&gt;. A pot experiment was performed to understand the phytoremediation potential of two non-food crops (Sorghum bicolor L. Moench and Brassica napus Westar), chosen for their economic importance and heavy metal accumulation capacities. Bioconcentration factor, translocation factor and tolerance Indexes clearly indicated a better performance of canola in tolerating Pb and Zn, especially in soil B, even if contained higher amounts of both metals. To evaluate different chemical and physical forms of Pb and Zn in the two soils, a modified BCR extraction scheme was employed to determine amounts bound to different soil components: exchangeable fraction (acid-soluble, carbonate and exchangeable bound), reducing fraction (metal bound to Fe- or Mn-oxides), oxidizable fraction (organic and sulphide bound), and residual fraction (strongest binding with crystalline structure). A comparison of the sum of Pb and Zn concentrations obtained from BCR relative to total digestion values (pseudo-total concentrations) showed recoveries close to 100%. Very small amounts of Pb were released during step 1 (exchangeable fraction) (6,86% - soil A and 2,12% - soil B). The highest concentration of Pb, 62,62% in soil A and 56,68% in soil B, decreased in the reducing fraction (step 2), probably occurring mainly as forms bound to Fe/Mn oxides. Step 3 (oxidizable-organic matter &amp;#8220;OM&amp;#8221; and sulphides) released amounts of 23,15% and 20,32% of total Pb in soil A and B. Residual fraction presented very different amounts of Pb (7,87% in soil A and 20,88% in soil B). Unlike Pb, no important differences were found in the distribution of Zn among the various fraction of the two soils, with the greater amounts contained in the exchangeable fraction of both soils, 31.11% in soil A and 21.92% in soil B. Very small amounts of Zn were released during step 2 (19,3% in soil A and 22,27% in soil B) whereas step 3 released the highest amounts of Zn in both soils (36,56% in A and 40,17% in B). Residual fraction presents similar amounts of total Zn, 13,03% in A e 15,64% in B, showing an opposite trend with respect to Pb. So, a major portion of total Pb was associated to the reducing fraction, while Zn was found mostly in oxidable one, indipendent on the origin of samples. Pb strongly interacts with Fe-/Mn oxides, and, in soil B, a greater amount is immobilized in the residual fraction. These results suggest lower mobility and bioavailability of Pb in soil B with respect to soil A, partially explaining the pot experiment.&lt;/p&gt;


2010 ◽  
Vol 59 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Z. Győri ◽  
K. Alapi ◽  
J. Prokisch ◽  
T. Németh ◽  
D. Adriano ◽  
...  

At the beginning of the year 2000 two considerable waves of pollution occurred on the river Tisza. With the second wave, in a simultaneous flood, a huge amount of mud contaminated with heavy metals settled on the floodplains. As most of the contaminated areas are under agricultural use, the study of the heavy metal charge of soils and herbaceous plants of the floodplain has great importance. Along the Tisza four sampling sites were established and 300 cm deep drill cores were taken. The results of analytical examinations show that the heavy metal content of the topsoil is higher than that of the earlier formed lower layers, although contamination is also present there. This suggests that pollutions like this are not unknown in the Tisza Valley. It is greatly important to take cadmium pollution into consideration, as this element is extremely toxic and easily taken up by plants, and is likely to be a serious problem in the floodplain. The risk of contamination in the topsoil of the floodplain soils were examined in detail. The soils’ heavy metal content was the highest where the two pollution waves can be measured first at the same site. For determining the amount of heavy metals bound to other compounds sequential extractions were carried out. The proportion of the water soluble and exchangeable fraction – that is bioavailable to plants – is negligible in respect of Cu, Pb, and Zn, while it is considerable in the case of Cd, showing the risk of contamination. The gained data show that the high proportion of cadmium results in a remarkable environmental risk, while other heavy metals turn into a bioavailable form only after intensive acidification. The proportion of the heavy metal fraction bound to humus materials was expected to be low due to the exogenous origin and freshness of the topsoil.


Soil Research ◽  
1997 ◽  
Vol 35 (4) ◽  
pp. 727 ◽  
Author(s):  
Y. B. Ma ◽  
N. C. Uren

A new sequential extraction procedure to remove specifically adsorbed forms of trace metals and easily reducible manganese (Mn) oxide fractions was used to study the fate and transformations of zinc (Zn) added to soils. Most of the endogenous Zn in field soils (75–87%) was found to exist in a residual fraction which is considered to be silicates, while the Zn added as a fertiliser in the field soils was found predominantly in an EDTA-extractable fraction and in association with iron (aluminium) [Fe (Al)] and Mn oxides. The Zn recently added to soils was found to be more in the reactive forms (water-soluble plus exchangeable and EDTA-extractable Zn) than the Zn added to field soils in association with long-term Zn application. With time, the EDTA-extractable Zn transformed into the unreactive forms (Zn associated with Fe (Al) and Mn oxides). The processes could be described by a diffusion equation. The apparent diffusion rate coefficients were found to be in the order of 10–10–10–11/s. The diffusion activation energy (Ea) was found to be 67 kJ/mol. The diffusion of Zn cations into microporous solids is probably a rate-limiting process. The transformation of reactive Zn into unreactive Zn was enhanced by elevated temperatures and by drying and rewetting. The drying and rewetting effect at relatively high temperature may be important in the processes which lead to decreases in the availability of Zn to plants.


2011 ◽  
Vol 76 (5) ◽  
pp. 781-794 ◽  
Author(s):  
Miodrag Jelic ◽  
Jelena Milivojevic ◽  
Srecko Trifunovic ◽  
Ivica Djalovic ◽  
Dragisa Milosev ◽  
...  

Soil of arable land and meadows from the Ap horizon, taken from ten different localities, were investigated for different forms of Fe, including total (HF), pseudo-total (HNO3), 0.1M HCl extractable and DTPA-extractable. A sequential fractional procedure was employed to separate the Fe into fractions: water soluble and exchangeable Fe (I), Fe specifically adsorbed with carbonates (II), reducibly releasable Fe in oxides (III), Fe bonded with organic matter (IV) and Fe structurally bonded in silicates (residual fraction) (V). The soil pH, CEC, and size fractions (clay and silt) had a strongest influence on the distribution of the different forms of Fe. The different extraction methods showed similar patterns of the Fe content in arable and meadow soils. However, the DTPA iron did not correspond with the total iron, which confirms the widespread incidence of iron-deficiency in vertisols is independent of the total iron in soils. The amount of exchangeable (fraction I) and specifically adsorbed (II) iron showed no dependence on its content in the other fractions, indicating low mobility of iron in vertisols. The strong positive correlation (r = 0.812 and 0.956) between the content of iron in HNO3 and HF and its contents in the primary and secondary minerals (fraction - V) indicate a low content of plant accessible iron in the vertisol. The sequential fractional procedure was confirmed as suitable for accessing the content and availability of iron in the vertisols of Serbia.


Sign in / Sign up

Export Citation Format

Share Document