scholarly journals Fabrication of 9,9′-Bis(aryl)fluorene-modified nanocellulose bamboo fiber composite

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3907-3915
Author(s):  
Khan Md Sefat ◽  
Takashi Kurose ◽  
Masahiro Yamada ◽  
Hiroshi Ito ◽  
Shinichi Shibata

A green composite was fabricated using bamboo fiber and 9,9′-bis(aryl)fluorene-modified cellulose nanofiber (FCNF). Cellulose nanofiber (CNF) and finely crushed bamboo fiber (CBF) were also used as binders. The mechanical properties of the composites were compared. It was found that the FCNF-bamboo fiber composite had the maximum flexural strength among these binders. This result was likely due to strong bonding by chemical reactions among fibers and the FCNF. The effect of fiber orientation accuracy on the mechanical properties of the composites was also investigated. When the bamboo fibers were carefully aligned, without fibers crossing each other, the mechanical properties increased by two times, compared to the composites with fibers crossing each other. In the accurately aligned bamboo composites, the cross sections of the fibers were largely deformed by compression stress during hot-press forming. Thus, the gaps among fibers decreased, and interfacial adherence was improved. The effect of fabrication temperature on the mechanical properties of the FCNF-bamboo composite was also examined. It was found that the maximum flexural modulus and strength of the composites were at approximately 250 °C, and the mechanical properties rapidly decreased above 270 °C due to thermal degradation of the bamboo fiber.

2010 ◽  
Vol 447-448 ◽  
pp. 760-764 ◽  
Author(s):  
Keiji Ogawa ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Mitsuaki Taniguchi ◽  
Sachiko Ogawa

Bamboo grows faster than other renewable natural materials. Bamboo fiber, in particular, has attracted attention as an environmentally superior material. Therefore, we proposed a sustainable manufacturing system using bamboo. An extraction method of bamboo fibers end-milled using a machining center with in-situ measurement is proposed. Bamboo fibers with high precision shape are efficiently acquired. In the present report, we propose the fabrication of binder-free composite by a hot press forming method that only uses bamboo fibers extracted by a machining center. We experimentally demonstrated various hot press forming conditions and achieved proper forming conditions to optimize the forming process. We also made various three-dimensional shapes considering the practical applications of the formed binder-free bamboo fiber moldings.


2014 ◽  
Vol 625 ◽  
pp. 355-359
Author(s):  
Shinya Imura ◽  
Keiji Ogawa ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Bamboo grows faster than other renewable natural materials. Bamboo fiber, in particular, has attracted attention as an environmentally superior material. Therefore, we propose a sustainable manufacturing system using bamboo. A method is also proposed for extracting bamboo fibers end-milled using a machining center with in-situ measurement. Bamboo fibers with highly precise shapes are efficiently acquired. Previously, we proposed the fabrication of a binder-free composite by a hot press forming method that only uses bamboo fibers extracted by a machining center. We experimentally demonstrated various hot press forming conditions and achieved proper ones to optimize the forming process. However, we have not yet constructed a method to obtain the best fiber extracting and molding conditions considering both its efficiency and performance. Therefore, in this report, we investigate the influence of the length of used bamboo fiber on the characteristics of the molded products, as its length deeply affects the extracting efficiency and focuses on a degradable plastic as a standard of molded product strength.


Author(s):  
Kota Inoue ◽  
Antoine Bigeard ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Keiji Ogawa ◽  
...  

Research is currently ongoing for composite materials using natural fiber with a small burden on the environment. We have been focusing on bamboo because of its fast growth, renewability, flexibility, low cost, and high specific strength. We previously proposed a novel hot press fabrication method for binder-free green composite products made from bamboo fibers extracted by end-milling with a machining center. We can use this method to form three-dimensionally shaped products, especially hemispherical shells, by using two kinds of dies. However, this method is complex and takes longer than one-step hot press forming. In the present report, we propose a new method that uses bamboo powder with a particle size of less than 500 μm. Our new method uses one-step hot press forming and is quicker than the previous method at making a hemispherical shell shape. The new method was successfully used to manufacture hemispherical shell-shape products.


2020 ◽  
Vol 10 (3) ◽  
pp. 1159 ◽  
Author(s):  
Yingmei Xie ◽  
Hiroki Kurita ◽  
Ryugo Ishigami ◽  
Fumio Narita

Epoxy resins are a widely used common polymer due to their excellent mechanical properties. On the other hand, cellulose nanofiber (CNF) is one of the new generation of fibers, and recent test results show that CNF reinforced polymers have high mechanical properties. It has also been reported that an extremely low CNF addition increases the mechanical properties of the matrix resin. In this study, we prepared extremely-low CNF (~1 wt.%) reinforced epoxy resin matrix (epoxy-CNF) composites, and tried to understand the strengthening mechanism of the epoxy-CNF composite through the three-point flexural test, finite element analysis (FEA), and discussion based on organic chemistry. The flexural modulus and strength were significantly increased by the extremely low CNF addition (less than 0.2 wt.%), although the theories for short-fiber-reinforced composites cannot explain the strengthening mechanism of the epoxy-CNF composite. Hence, we propose the possibility that CNF behaves as an auxiliary agent to enhance the structure of the epoxy molecule, and not as a reinforcing fiber in the epoxy resin matrix.


Author(s):  
Yang Li ◽  
Yong-Phil Jeon ◽  
Chung-Gil Kang

Bending behavior occurs in the hot press forming process, resulting in many cases of failure during forming. To address the problem of cracking and improve the formability and mechanical properties of boron steel sheets in the bending process, an experiment has been carried out by using a spring compound bending die. Also, a comparison has been made between the traditional U-bending die and the spring compound bending die with regard to formability. The influence of the parameters for hot press forming such as the heating temperature, punch speed, and die radii on the mechanical properties and microstructure was analyzed by tension testing and metallographic observations.


2020 ◽  
Vol 15 ◽  
pp. 155892502095819
Author(s):  
Qianting Wang ◽  
Yu Zhang ◽  
Weikang Liang ◽  
Jianjie Wang ◽  
Youxin Chen

In this work, the surface of the bamboo fibers (BF) was treated with three kinds of silane coupling agents terminated with amino functional groups (KH550), epoxy functional groups (KH560), and methyl functional groups (KH570) to improve fiber–matrix adhesion. The effects of silane treatment on the mechanical properties and thermal behavior of BF/polypropylene (PP) composites were investigated. Mechanical test results showed that the order of modification effectiveness was KH570 > KH550 > KH560. KH570 treated fiber composite exhibited the best mechanical properties. The tensile strength and flexural strength of 5 wt% KH570 treatment reached to 36.1 and 54.7 MPa, which were 15.4% and 23.6% higher than those of UBF/PP composites. Simultaneously, the thermal stability increased from 467.0°C (UBF) to 470.6°C (KH-570 treated BF). An increase in crystallization temperature (1.7°C) and a decrease in crystallinity (5.8%) occurred upon the addition of 5% KH570 silanes treated bamboo fibers.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2007
Author(s):  
Lety del Pilar Fajardo Cabrera de Lima ◽  
Cristian David Chamorro Rodríguez ◽  
José Herminsul Mina Hernandez

In obtaining wood polymer composites (WPCs), a weak interfacial bonding can cause problems during the processing and affect the mechanical properties of the resulting composites. A coupling agent (CA) is commonly used to solving this limitation. To improve the interfacial bonding between bamboo fiber (BF) and a polypropylene matrix, the effect of three organic acids on the mechanical properties and interfacial morphology were investigated. The BF/PP composites were prepared in five families: the first without CA, the second using a maleic anhydride-grafted polypropylene coupling agent, and the third, fourth, and fifth families with the addition of organic acids (OA) tricarboxylic acid (TRIA), hexadecanoic acid (HEXA), and dodecanoic acid (DODA), respectively. The use of OA in BF/PP improved the interfacial adhesion with the PP matrix, and it results in better mechanical performance than composites without CA. Composites coupled with MAPP, TRIA, DODA, and HEXA showed an increase in Young’s modulus of about 26%, 23%, 15%, and 16% respectively compared to the composite without CA incorporation. In tensile strength, the increase in composites with CA was about 190%, while in the flexural modulus, the coupled composites showed higher values, and the increase was more in composites with TRIA: about 46%. The improvement caused by tricarboxylic acid was similar to that promoted by the addition of maleic anhydride-grafted polypropylene (MAPP).


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1459
Author(s):  
Agbelenko Koffi ◽  
Fayçal Mijiyawa ◽  
Demagna Koffi ◽  
Fouad Erchiqui ◽  
Lotfi Toubal

Wood–plastic composites have emerged and represent an alternative to conventional composites reinforced with synthetic carbon fiber or glass fiber–polymer. A wide variety of wood fibers are used in WPCs including birch fiber. Birch is a common hardwood tree that grows in cool areas such as the province of Quebec, Canada. The effect of the filler proportion on the mechanical properties, wettability, and thermal degradation of high-density polyethylene/birch fiber composite was studied. High-density polyethylene, birch fiber and maleic anhydride polyethylene as coupling agent were mixed and pressed to obtain test specimens. Tensile and flexural tests, scanning electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetry analysis and surface energy measurement were carried out. The tensile elastic modulus increased by 210% as the fiber content reached 50% by weight while the flexural modulus increased by 236%. The water droplet contact angle always exceeded 90°, meaning that the material remained hydrophobic. The thermal decomposition mass loss increased proportional with the percentage of fiber, which degraded at a lower temperature than the HDPE did. Both the storage modulus and the loss modulus increased with the proportion of fiber. Based on differential scanning calorimetry, neither the fiber proportion nor the coupling agent proportion affected the material melting temperature.


Sign in / Sign up

Export Citation Format

Share Document