scholarly journals Effect of Hydrogen Peroxide and Anthraquinone on the Selectivity and Hexenuronic Acid Content of Mixed Tropical Hardwood Kraft Pulp during Oxygen Delignification

BioResources ◽  
2013 ◽  
Vol 8 (2) ◽  
Author(s):  
Yin Hui Chong ◽  
Wan Rosli Wan Daud ◽  
Cheu Peng Leh
Holzforschung ◽  
2011 ◽  
Vol 65 (3) ◽  
Author(s):  
Roberta Pacheco Francisco ◽  
Jorge Luiz Colodette ◽  
Antonio Aprigio da Silva Curvelo

Abstract Kraft pulp is currently bleached largely by the elemental chlorine free (ECF) technology with oxygen, chlorine dioxide, and hydrogen as active agents. This technology brought about significant environmental improvements in relation to standard processes based on chlorine gas and hypochlorite, but there is still need for further improvements. This study presents a novel environmentally friendly bleaching stage – the so-called ‘hydrogen peroxide in supercritical carbon dioxide’, P(SC-CO2) – that can be adapted to current ECF bleaching processes, with preference in cases where hydrogen peroxide is already used. In this study, the P(SC-CO2) stage was evaluated as a replacement to the last peroxide stage of the D(EP)DP bleaching sequence and to the first peroxide stage of the D(EP)DP sequence, for an oxygen delignified eucalypt kraft-O2 pulp. The P(SC-CO2) stage was run with 0.5% hydrogen peroxide, at 15% consistency, 70°C, and 73 bar. The reaction time was 30 min. The performances of regular P stages and the new P(SC-CO2) stage were compared. Promising results were observed with the DEP(SC-CO2)DP sequence; the P(SC-CO2) decreased kappa number from 2.7 to 2.1, and the hexenuronic acid groups from 17.0 to 12.4 mmol kg-1. The P(SC-CO2) stage showed poor performance when applied in the D(EP)DP(SC-CO2) sequence. It is concluded that the process presents potential but requires further optimization to improve selectivity and efficiency.


2013 ◽  
Vol 634-638 ◽  
pp. 386-390
Author(s):  
Zhi Li ◽  
Jun Li ◽  
Jun Xu

Elemental Chlorine Free (ECF) bleaching sequence of O1/O2D0EOPD1D2 was adopted to bleach the pro-hydrolyzed Larix kraft pulp, where O1/O2 was two-stage oxygen delignification without interstage treatment, D was chlorine dioxide bleaching, EOP was pressurized alkaline extraction strengthened by hydrogen peroxide. Keeping bleaching temperature and time unchanged, sodium hydroxide charge(NaOH) in O1 stage, chlorine dioxide(ClO2) charge in D0 stage and D2 stage were studied, pulp properties such as brightness, kappa number, alpha-cellulose, pentosan and polymerization degree were measured and compared to establish optimal bleaching conditions. Results show that the optimal charge of NaOH in O1 stage is 2.5%, ClO2 in D0 and D2 stage are 2.5%, 0.6%, and the pulp gained at the optimal bleaching conditions has the properties of 93.9% of alpha-cellulose, 2.60% of pentosan, 375.5 ml/g of viscosity and 86.6%ISO of brightness.


Holzforschung ◽  
2006 ◽  
Vol 60 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Dongcheng Zhang ◽  
Yunqiao Pu ◽  
Xing-Sheng Chai ◽  
Ved Naithani ◽  
Hasan Jameel ◽  
...  

Abstract Two laboratory high-lignin-content softwood (SW) kraft pulps with kappa values of 48.0 and 49.5, prepared by cooking at high and low active alkali (AA), were used for the study of fiber charge development during two-stage oxygen delignification with inter-stage washing (OwO). It was established that the first oxygen delignification (O) stage increased total fiber charge by 2–4%, and further O-delignification via a second O-stage led to a 3–18% decrease in total fiber charge. Carboxylic acid content in pulp holocelluloses decreased by 12–26% with respect to a 35–70% kappa number reduction due to an O and OwO stage of delignification for high and low AA cooked SW kraft pulps. After an OwO-stage delignification, the residual lignin was found to exhibit a 50–100% increase in carboxylic acid content. 13C NMR spectral data for the residual lignin samples indicated that the unconjugated/conjugated acid ratio was approximately (3–4):1. Generally, the carboxylic acid content in low AA cooked softwood kraft pulp and the corresponding oxygen-delignified pulps was systematically higher (13–23%) than that in high AA cooked SW kraft pulp and the corresponding oxygen-delignified pulps. The experimental results also demonstrated that maximum acid-group content in total fiber occurred after 45–50% oxygen delignification of the SW kraft pulps studied.


Cellulose ◽  
2020 ◽  
Vol 27 (12) ◽  
pp. 7191-7202
Author(s):  
Axel Martinsson ◽  
Merima Hasani ◽  
Antje Potthast ◽  
Hans Theliander

Abstract The aim of this work was to provide softwood kraft pulp fibres with new functionalities by the introduction of carbonyl groups. Carbonyl groups are known to affect properties such as wet strength through the formation of covalent bonds, i.e. hemiacetals. The method developed involves oxidation using hydrogen peroxide at mildly acidic conditions. It was found that the carbonyl group content increased with both increasing temperature and residence time when oxidized at acidic conditions. The number of carboxylic groups, however, remained approximately constant. There was virtually no increase in carbonyl groups when oxidation was performed at alkaline conditions. The maximum increase in carbonyl groups was found at a residence time of 90 min, a reaction temperature of 85 °C and a pH of 4. These conditions resulted in an increase in carbonyl groups from 30 to 122 µmol/g. When formed into a sheet, the pulp oxidized at acidic conditions proved to maintain its structural integrity at aqueous conditions. This indicates the formation of hemiacetal bonds between the introduced carbonyl groups and the hydroxyl groups on the carbohydrate chains. Thus, a possible application for the method could be fibre modification during the final bleaching stage of softwood kraft pulp, where the wet strength of the pulp could be increased.


Holzforschung ◽  
2006 ◽  
Vol 60 (2) ◽  
pp. 137-142 ◽  
Author(s):  
Zhi-Hua Jiang ◽  
Jean Bouchard ◽  
Richard Berry

Abstract The finding that hexenuronic acid (HexA) groups can be selectively removed from kraft pulps by acid hydrolysis has provided an opportunity to reduce bleaching chemicals. However, there is evidence that the acid hydrolysis is not uniform. In this report, we evaluate the kinetics of acid hydrolysis of HexA in a xylan sample enriched with HexA, a conventional kraft pulp, and three modified kraft pulps: anthraquinone pulp (Kraft-AQ), polysulfide pulp (PS), and polysulfide-anthraquinone pulp (PS-AQ). We found that HexA present in the xylan and conventional kraft pulp behaved similarly toward the acid hydrolysis throughout. On the other hand, HexA present in the Kraft-AQ, PS-AQ and PS pulps was heterogeneous toward acid hydrolysis and the reaction can be separated into two pseudo-first-order kinetic phases, each of which has a different rate constant. The kinetic data provide evidence for the formation of lignin-HexA-xylan complexes during modified kraft pulping processes.


2019 ◽  
Vol 34 (2) ◽  
pp. 165-172 ◽  
Author(s):  
Moinul Haque ◽  
Moumita Nanjiba ◽  
M. Sarwar Jahan ◽  
M. A. Quaiyyum ◽  
M. Zahangir Alam ◽  
...  

Abstract Kraft pulps from acacia hybrid, Acacia mangium of 8 years old and Acacia auriculiformis of 6, 8 and 10 years old were pre-treated with oxygen, peroxyformic acid and acid treatment prior to bleaching. The kappa number reduction was 52–63 % by oxygen delignification, 31–35 % by peroxyformic acid (PFA) pre-treatment and 11–13 % by acid pre-treatment. Oxygen delignified pulp required less chlorine dioxide charge to reach target brightness. At the consumption of 30 kg ClO2/ton of pulp, the pulp brightness reached to 65–71 % for the untreated pulp, 81–85 % for the oxygen delignified pulp, 81–82 % for the PFA treatment and 79–80 % for acid pre-treated pulp. COD load in bleached effluent was much lower in oxygen delignified pulp. Cold alkali extraction of unbleached and oxygen delignified pulps was also carried out with varying alkali charge to remove hexenuronic acid (HexA) from the pulp. Xylan removal from the pulp was insignificant and resulted in no removal of HexA. Acid pretreatment removed 55.7 % to 17.8 % HexA from acacia hybrid, 57.5 % to 16.3 % from A. auriculiformis of 10 years and 58.6 % to 20.1 % from A. auriculiformis of 6 years old, resulting in improved final pulp brightness.


Sign in / Sign up

Export Citation Format

Share Document