scholarly journals Cationic Surfactant-assisted Microwave-NaOH Pretreatment for Enhancing Enzymatic Hydrolysis and Fermentable Sugar Yield from Peanut Shells

BioResources ◽  
2014 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhi-Feng Fang ◽  
Kun-Lun Liu ◽  
Fu-Sheng Chen ◽  
Li-Fen Zhang ◽  
Zhen Guo
2021 ◽  
Author(s):  
R. R. Samal ◽  
Aneeya K. Samantara ◽  
S. Mahalik ◽  
J. N. Behera ◽  
B. Dash ◽  
...  

Correction for ‘An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors’ by R. R. Samal et al., New J. Chem., 2021, 45, 2795–2803; DOI: 10.1039/D0NJ05088A.


2021 ◽  
Vol 45 (5) ◽  
pp. 2795-2803
Author(s):  
R. R. Samal ◽  
Aneeya K. Samantara ◽  
S. Mahalik ◽  
J. N. Behera ◽  
B. Dash ◽  
...  

Schematic representation of surfactant action for synthesis of cobalt hydroxide and oxide.


Author(s):  
Yohanita Restu Widihastuty ◽  
Sutini Sutini ◽  
Aida Nur Ramadhani

Pineapple leaf waste is one agricultural waste that has high cellulose content. Pineapple leaf waste's complex structure contains a bundle of packed fiber that makes it hard to remove lignin and hemicellulose structure, so challenging to produce reducing sugar. Dried pineapple leaf waste pretreated with a grinder to break its complex structure. Delignification process using 2% w/v NaOH solution at 87oC for 60 minutes has been carried out to remove lignin and hemicellulose structure so reducing sugar could be produced. Delignified pineapple leaf waste has been enzymatic hydrolyzed using cellulase enzyme (6 mL, 7 mL, and 8 mL) to produce reducing sugar. The sample was incubated in an incubator shaker at 155 rpm at 45, 55, and 60oC for 72 hours. Determination of reducing sugar yield had been carried out using the Dubois method and HPLC. The model indicated that the optimum operating condition of enzymatic hydrolysis is 7 mL of cellulase enzyme at 55oC to produce 96,673 mg/L reducing sugar. This result indicated that the enzymatic hydrolysis operating condition improved the reducing sugar yield from pineapple leaf waste. The optimum reducing sugar yield can produce biofuel by the saccharification process.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 787 ◽  
Author(s):  
Saleem Ethaib ◽  
Rozita Omar ◽  
Mustapa Kamal Siti Mazlina ◽  
Awang Biak Dayang Radiah

This study aims to evaluate the sugar yield from enzymatic hydrolysis and the interactive effect pretreatment parameters of microwave-assisted pretreatment on glucose and xylose. Three types of microwave-assisted pretreatments of sago palm bark (SPB) were conducted for enzymatic hydrolysis, namely: microwave-sulphuric acid pretreatment (MSA), microwave-sodium hydroxide pretreatment (MSH), and microwave-sodium bicarbonate (MSB). The experimental design was done using a response surface methodology (RSM) and Box–Behenken Design (BBD). The pretreatment parameters ranged from 5–15% solid loading (SL), 5–15 min of exposure time (ET), and 80–800 W of microwave power (MP). The results indicated that the maximum total reducing sugar was 386 mg/g, obtained by MSA pretreatment. The results also illustrated that the higher glucose yield, 44.3 mg/g, was found using MSH pretreatment, while the higher xylose yield, 43.1 mg/g, resulted from MSA pretreatment. The pretreatment parameters MP, ET, and SL showed different patterns of influence on glucose and xylose yield via enzymatic hydrolysis for MSA, MSH, and MSB pretreatments. The analyses of the interactive effect of the pretreatment parameters MP, ET, and SL on the glucose yield from SPB showed that it increased with the high MP and longer ET, but this was limited by low SL values. However, the analysis of the interactive effect of the pretreatment parameters on xylose yields revealed that MP had the most influence on the xylose yield for MSA, MSH, and MSB pretreatments.


Cellulose ◽  
2016 ◽  
Vol 24 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Xuliang Lin ◽  
Cheng Cai ◽  
Hongming Lou ◽  
Xueqing Qiu ◽  
Yuxia Pang ◽  
...  

2018 ◽  
Vol 124 ◽  
pp. 555-562 ◽  
Author(s):  
Zhuping Yu ◽  
Yangliu Du ◽  
Xiaona Shang ◽  
Ying Zheng ◽  
Jinghong Zhou

Sign in / Sign up

Export Citation Format

Share Document