scholarly journals Aerodromų kliūtis ribojančių paviršių modeliavimas geoinformacinių technologijų priemonėmis

2011 ◽  
Vol 56 ◽  
pp. 119-127
Author(s):  
Viktoras Paliulionis

Trijų matavimų (3D) erdvinių duomenų modeliavimas, analizė ir vizualizavimas naudojami daugelyje sričių. Šiame straipsnyje nagrinėjami klausimai, susiję su aerodromų kliūtis ribojančių paviršių (apsaugos zonų) modeliavimu, siekiant nustatyti kliūtis, kurios gali kelti pavojų orlaivių skrydžiams. Pademonstruota, kaip šiuos klausimus galima spręsti naudojantis skaitmeniniu reljefo, vietovės ir kliūtis ribojančių paviršių modeliavimu, 3D vizualizavimu ir analize. Siūlomas skaitmeninių vietovės modeliųsudarymo algoritmas leidžia efektyviai naudoti lazerinio skenavimo (LIDAR) taškų duomenis. Aprašyta bandomoji sistema „Akis-AER“, kurios paskirtis – padėti nustatyti kliūtis aplink aerodromus ir įvertinti planuojamus statyti ar aukštinamus statinius aerodromų apsaugos zonose.The Use of GIS Technology in Modelling Obstacle Limitation Surfaces of an AerodromeViktoras Paliulionis SummaruThere are many domains where the modelling, analysis and visualization of three-dimensional spatial data can be useful. The paper discusses the issues concerning the modelling of aerodrome obstacle limitation surfaces. They can help to detect obstacle in the flight path of an aircraft. To this end, digital relief and site models need to be created together with obstacle limitation surface models. A fast and effective algorithm of creating three-dimensional digital site model which uses airborne laser scanning (LIDAR) data is proposed. The 3D visualization and analysis of the model are also discussed. The paper presents the experimental Akis-AER software designed to detect potential obstacles around an aerodrome and assess whether it is safe to install a new construction or to increase the height of the existing one in the navigating space around the aerodrome.

2012 ◽  
Vol 529 ◽  
pp. 195-199
Author(s):  
Qiu Long Liu ◽  
Wu Sheng Hu

3D (three-dimensional) laser scanning can be used to collect spatial location of points rapidly and abundantly, and obtain three-dimensional coordinates of the target surface, which provides new technical means for the rapid creation of three-dimensional image model of the object. A three-dimensional modeling study on spatial object was carried out using the spatial data captured via ground-based 3D laser scanner in the Hui-Quan substation. The experiment result shows that rapid 3D visualization modeling on buildings can be achieved via the methods and procedures mentioned above. It has solved that the traditional equipment and the measuring technique is insufficiency in the special domain. It will bring the application mode and technical advantage, which tradition mapping way can not have. A platform for three-dimensional model of the substation can be achieved for the resources, landscape, security, environmental management and other social resources of digital, networked and dynamic visualization.


2012 ◽  
Vol 476-478 ◽  
pp. 2411-2414
Author(s):  
Qiu Long Liu ◽  
Wu Sheng Hu

3D (three-dimensional) laser scanning can be used to collect spatial location of points rapidly and abundantly, and obtain three-dimensional coordinates of the target surface, which provides new technical means for the rapid creation of three-dimensional image model of the object. A three-dimensional modeling study on spatial object was carried out using the spatial data captured via ground-based 3D laser scanner in the Hui-Quan substation. The experiment result shows that rapid 3D visualization modeling on buildings can be achieved via the methods and procedures mentioned above. It has solved that the traditional equipment and the measuring technique is insufficiency in the special domain. It will bring the application mode and technical advantage, which tradition mapping way can not have. A platform for three-dimensional model of the substation can be achieved for the resources, landscape, security, environmental management and other social resources of digital, networked and dynamic visualization.By taking WuXi Hui-Quan Substation as the research object, building 3D models by Three-dimensional laser scanning technology and embedding 3D-GIS, Meanwhile, combining existing 2D-geographical spatial data, data preparation, construction of 3D-model, 3D-visualization, space inquiry and analysis, information management are given systematic analysis and research. In the end, in the programming environment of C#2.0, Skyline software is employed with its open Application Programmed Interface (API), which constructs 3D-scenes and 3D-terrain models of WuXi Hui-Quan Substation and comes to the realization of 3D-visualization, property inquiry and edit of Attribute data.


2018 ◽  
Vol 933 (3) ◽  
pp. 52-62
Author(s):  
V.S. Tikunov ◽  
I.A. Rylskiy ◽  
S.B. Lukatzkiy

Innovative methods of aerial surveys changed approaches to information provision of projecting dramatically in last years. Nowadays there are several methods pretending to be the most efficient for collecting geospatial data intended for projecting – airborne laser scanning (LIDAR) data, RGB aerial imagery (forming 3D pointclouds) and orthoimages. Thermal imagery is one of the additional methods that can be used for projecting. LIDAR data is precise, it allows us to measure relief even under the vegetation, or to collect laser re-flections from wires, metal constructions and poles. Precision and completeness of the DEM, produced from LIDAR data, allows to define relief microforms. Airborne imagery (visual spectrum) is very widespread and can be easily depicted. Thermal images are more strange and less widespread, they use different way of image forming, and spectral features of ob-jects can vary in specific ways. Either way, the additional spectral band can be useful for achieving additional spatial data and different object features, it can minimize field works. Here different aspects of thermal imagery are described in comparison with RGB (visual) images, LIDAR data and GIS layers. The attempt to estimate the feasibility of thermal imag-es for new data extraction is made.


2018 ◽  
Vol 18 ◽  
pp. 98-105
Author(s):  
N. V. Pavliuk

The issues related to the introduction of innovative methods, technologies and technological means in the investigation of crimes are considered. It is noted that one of the main directions of the development of Criminalistics is the assimilation of the virtual reality associated with computerization of spheres of life, implementation of modern technologies and their use in law enforcement. Technology use of laser scanning of terrain and objects resulting in 3D model is produced allows several times to increase informative value of data collected at the incident scene, provides a visual and convenient visualization in three-dimensional form. As against photo and video images, 3D model has a stereoscopic image and the ability to freely change the angle while viewing. Besides to scanning results can be stored on any digital media without the possibility of changes or adjustments. Attention is focused on the technological capabilities of 3D-visualization systems on examples of their use in foreign countries as technological means of capturing the situation of the scene and the subsequent of a crime reconstruction. Thus, using a portable three-dimensional imaging system for working with volumetric traces at a crime scene, it is possible to obtain accurate three-dimensional images of traces of protectors or footprints (shoes) on soil and snow. This system is an alternative to traditional methods of fixing evidence: photofixing and making plaster casts. Unlike other systems, new approach does not require the use of lasers. The expediency of expanding the range of 3D laser scanning system use in modern investigative and judicial practice of our state with the aim of increasing the level of provision of pre-trial investigation authorities with technological means and bringing it closer to European standards is argued.


Author(s):  
Scott Neurauter ◽  
Sabrina Szeto ◽  
Matt Tindall ◽  
Yan Wong ◽  
Chris Wright

3D visualization is the process of displaying spatial data to simulate and model a real three dimensional space. Using 3D visualization, Geomatic professionals are enabling pipeline engineers to make better decisions by providing an increased understanding of potential costs earlier in the design process. This paper will focus on the value of visualizing Digital Elevation Model (DEM) data through the use of hillshades and imagery-draped 3D models. From free online DEM data to high resolution Light Detection and Ranging (LiDAR) derived DEM data, the increased availability allows for a broader use of 3D visualization techniques beyond 3D analysis. Of the numerous sources available, two DEM sources will be discussed in this paper, the free low resolution DEM (CDED Level 1) and the more costly but higher resolution LiDAR based DEM. Traditional methods of evaluating potential locations for route and facilities involved a significant cost for ground truthing. Through the use of 3D visualization products, multiple potential locations can be examined for suitability without the expense of field visits for every candidate site. By focusing on the selected candidate locations using a visual desktop study, the time and expense of ground truthing all of the potential sites can be reduced significantly. Exploiting the visual value of DEM permits a productive and cost efficient methodology for initial route and facility placement on hydrocarbon projects.


2012 ◽  
Vol 594-597 ◽  
pp. 2398-2401
Author(s):  
Dong Ling Ma ◽  
Jian Cui ◽  
Fei Cai

This paper provides a scheme to construct three dimensional (3D) model fast using laser scanning data. In the approach, firstly, laser point cloud are scanned from different scan positions and the point cloud coming from neighbor scan stations are spliced automatically to combine a uniform point cloud model, and then feature lines are extracted through the point cloud, and the framework of the building are extracted to generate 3D models. At last, a conclusion can be drawn that 3D visualization model can be generated quickly using 3D laser scanning technology. The experiment result shows that it will bring the application model and technical advantage which traditional mapping way can not have.


2021 ◽  
Vol 875 (1) ◽  
pp. 012083
Author(s):  
N Begliarov ◽  
E Mitrofanov ◽  
V Kiseleva

Abstract Modern geodetic technologies of gathering three-dimensional spatial data incorporate terrestrial laser scanning and aerial photo survey from unmanned aerial vehicles. The combination of these technologies and joint result of survey provide the data of 3D point model and accurate information on trunks and crowns of individual trees. The paper examines the experiment with the application of method of formation of 3D measuring scene in the form of dense cloud of points combining the results of terrestrial laser scanning and materials of photogrammetric processing of UAV-provided data. The method eliminates basic shortcomings of each technology, enhances their advantages, and opens the way to the compilation of more representative 3D measuring scenes. A specific advantage of the method is the outcropping of detailed information on the form, size and condition of individual tree crowns. This option finds a practical application in landscape evaluation and design, remote measuring of trunk parameters excluding the felling of model trees for the compilation of regional timber account tables. The closest perspectives of method development are related to increasing the accuracy of combined survey by specifying flight missions and working with the light regime under forest canopy.


Author(s):  
A. Stamnas ◽  
D. Kaimaris ◽  
C. Georgiadis ◽  
P. Patias

Abstract. Nowadays, there are many methods and techniques for the documentation and the restoration of historic structures and historical artifacts that are commonly used due to their completeness, accuracy and fastness. The use of advanced 3D measurement technologies, by either using terrestrial or aerial means of acquiring digital data, has become an efficient and reliable documentation tool. Within this context, this study focuses on combining terrestrial laser scanning, unmanned aerial vehicle photogrammetry, close-range photogrammetry and topographic surveying, and comparing the associated digital data for archaeological fieldwork documentation. The data collected during the Thessaloniki Toumba Excavation (Greece) provided accurate digital surface models and photo-realistic three-dimensional outputs of archaeological trenches. The data elaboration enabled new inferences and knowledge to be gained through the implementation of advanced technologies in heritage documentation.


Author(s):  
Nikolay Kanashyn ◽  
Andrey Nikitchyn ◽  
Dmytriy Afonyn

Objective: To state 3D modeling application experience in bridgeworks reconstruction by the example of Palace Bridge in Saint Petersburg. Methods: It was shown that one of the possible spheres of bridge 3D models application was the acquisition of spatial data of bridge constructions and components’ arrangement, as well as the analysis of main axis position with respect to each other. The technology of acquiring the initial data for modeling was given, the essence of which is in composite application of surface laser scanning, electronic tacheometer line and angle measurements, and measurement of difference in elevation by digital levelling instrument. Order of processing field evidence was stated, as well as the main used software products – CREDO_DAT, X-TOOLS, Autodesk AutoCAD. Results: Fragments of 3D facility models. Practical importance: Opportunity and operability of 3D models application in the process of bridgework reconstruction. The article might be of interest for bridgework design engineers, as well as students and postgraduates, studying the construction and maintenance of bridgeworks.


2020 ◽  
pp. paper46-1-paper46-10
Author(s):  
Ilya Rylskiy

During past 25 years, laser scanning has evolved from an experimental method into a fully autonomous family of Earth remote sensing methods. Now this group of methods provides the most accurate and detailed spatial data sets, while the cost of data is constantly falling, the number of measuring instruments (laser scanners) is constantly growing. The volumes of data that will be obtained during the surveys in the coming decades will allow the creation of the first sub-global coverage of the planet. However, the flip side of high accuracy and detail is the need to store fantastically large volumes of three-dimensional data without loss of accuracy. At the same time, the ability to work with the specified data in both 2D and 3D mode should be improved. Standard storage methods (file method, geodatabases, archiving, etc) solve the problem only partially. At the same time, there are some other alternative methods that can remove current restrictions and lead to the emergence of more flexible and functional spatial data infrastructures. One of the most flexible and promising ways of laser data storage and processing are quadtree and octree-based approaches. Of course, these approaches are more complicated than typical file data structures, that are commonly used for LIDAR data storage, but they allow users to solve some typical negative features of point datasets (processing speed, non-topological spatial structure, limited precision, etc.).


Sign in / Sign up

Export Citation Format

Share Document