Extension of the ARAS Method for Decision-Making Problems with Interval-Valued Triangular Fuzzy Numbers

Informatica ◽  
2015 ◽  
Vol 26 (2) ◽  
pp. 335-355 ◽  
Author(s):  
Dragisa Stanujkic
2015 ◽  
Vol 22 (1) ◽  
pp. 122-141 ◽  
Author(s):  
Dragisa STANUJKIC

Decision-making in fuzzy environment is often a very complex, especially when related to predictions and assessments. The Ratio system approach of the MOORA method and Intervalvalued fuzzy numbers have already proved themselves as the effective tools for solving complex decision-making problems. Therefore, in this paper an extension of the Ratio system approach of the MOORA method, which allows a group decision-making as well as the use of interval-valued triangular fuzzy numbers, is proposed. Interval-fuzzy numbers are rather complex, and therefore, they are not practical for direct assigning performance ratings. For this reason, in this paper it has also been suggested the approach which allows the expression of individual performance ratings using crisp, interval or fuzzy numbers, and their further transformation into the group performance ratings, expressed in the form of interval-valued triangular fuzzy numbers, which provide greater flexibility and reality compared to the use of linguistic variables. Finally, in this paper the weighted averaging operator was proposed for defuzzification of interval-valued triangular fuzzy numbers.


Informatica ◽  
2021 ◽  
pp. 1-36
Author(s):  
Ayoub Mohammadian ◽  
Jalil Heidary Dahooie ◽  
Ali Reza Qorbani ◽  
Edmundas Kazimieras Zavadskas ◽  
Zenonas Turskis

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 516 ◽  
Author(s):  
Shahzad Faizi ◽  
Wojciech Sałabun ◽  
Samee Ullah ◽  
Tabasam Rashid ◽  
Jakub Więckowski

Multi-criteria decision-making (MCDM) plays a vibrant role in decision-making, and the characteristic object method (COMET) acts as a powerful tool for decision-making of complex problems. COMET technique allows using both symmetrical and asymmetrical triangular fuzzy numbers. The COMET technique is immune to the pivotal challenge of rank reversal paradox and is proficient at handling vagueness and hesitancy. Classical COMET is not designed for handling uncertainty data when the expert has a problem with the identification of the membership function. In this paper, symmetrical and asymmetrical normalized interval-valued triangular fuzzy numbers (NIVTFNs) are used for decision-making as the solution of the identified challenge. A new MCDM method based on the COMET method is developed by using the concept of NIVTFNs. A simple problem of MCDM in the form of an illustrative example is given to demonstrate the calculation procedure and accuracy of the proposed approach. Furthermore, we compare the solution of the proposed method, as interval preference, with the results obtained in the Technique for Order of Preference by Similarity to Ideal solution (TOPSIS) method (a certain preference number).


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1858
Author(s):  
Samayan Narayanamoorthy ◽  
Arumugam Anuja ◽  
Daekook Kang ◽  
Joseph Varghese Kureethara ◽  
Samayan Kalaiselvan ◽  
...  

This world has a wide range of technologies and possibilities that are available to control air pollution. Still, finding the best solution to control the contamination of the air without having any impact on humans is a complicated task. This proposal helps to improve the air quality using the multi-criteria decision making method. The decision to improve air quality is a challenging problem with today’s technology and environmental development level. The multi-criteria decision making method is quite often faced with conditions of uncertainty, which can be tackled by employing fuzzy set theory. In this paper, based on an objective weighting method (CCSD), we explore the improved fuzzy MULTIMOORA approach. We use the classical Interval-Valued Triangular Fuzzy Numbers (IVTFNs), viz. the symmetric lower and upper triangular numbers, as the basis. The triangular fuzzy number is identified by the triplets; the lowest, the most promising, and the highest possible values, symmetric with respect to the most promising value. When the lower and upper membership functions are equated to one, we get the normalized interval-valued triangular fuzzy numbers, which consist of symmetric intervals. We evaluate five alternatives among the four criteria using an improved MULTIMOORA method and select the best method for improving air quality in Tamil Nadu, India. Finally, a numerical example is illustrated to show the efficiency of the proposed method.


2021 ◽  
Vol 40 (1) ◽  
pp. 221-233
Author(s):  
Xingang Wang ◽  
Ke Wang

In many cases, complex problems cannot be accurately described by precise numerical values. Fuzzy theory provides a suitable tool for solving these problems. However, if decision makers cannot reach an agreement on the method for defining linguistic variables based on fuzzy sets, TIVFNs (triangular interval-valued fuzzy numbers) can provide more accurate modeling. Therefore, solving fuzzy MCGDM (multiple criteria group decision-making) problem with an unknown expert weight and criterion weight in TIVFNs has become an important research direction. In this paper, TIVF-VIKOR (triangular interval-valued fuzzy VIKOR) method, which is suitable for the environment of TIVFNs, is proposed to solve the problem of fuzzy MCGDM. To achieve this goal, the TIVF-VIKOR method is innovatively adopted similarity and coefficient of variation are combined to calculate expert weight, and deviation maximization method based on divergence matrix is used to calculate criterion weight. VIKOR method is used to find the compromise solutions, which are converted into the form of binary connection number, and the optimal compromise solution is obtained after ranking. The proposed method is applied to the problem of machine fault detection, and the validity and feasibility of the method are illustrated. Compared with the TOPSIS∖ELECTRE method, the ranking results of the three methods are equivalent, and the fluctuation of the TIVF-VIKOR method is more distinct.


2019 ◽  
Vol 11 (18) ◽  
pp. 5057 ◽  
Author(s):  
Ren-Jie Mao ◽  
Jian-Xin You ◽  
Chun-Yan Duan ◽  
Lu-Ning Shao

The third-party platform named ECO system is used by many transnational companies to monitor the sustainability performance of their global suppliers because of its easiness and shareability. Nonetheless, methods used in this platform for evaluating and calculating the sustainability performance of the alternative suppliers are criticized for their lack of accuracy. In response to these problems, this paper presents a heterogeneous multi-criteria decision-making (MCDM) method based on interval-valued intuitionistic fuzzy--an acronym in Portuguese for interactive multi-criteria decision making (IVIF--TODIM) to improve the efficiency of the evaluation model. Considering the varying features of evaluation criteria, i.e., either quantitative or qualitative, the evaluation values under different criteria are expressed in their appropriate information types. In this paper, a general method based on the relative closeness to the technique for order preference by similarity to ideal solution (TOPSIS) method is applied for aggregating the heterogeneous assessment information, including crisp numbers, interval numbers, and triangular fuzzy numbers (TFNs), into interval-valued intuitionistic fuzzy numbers (IVIFNs). Then, the TODIM (an acronym in Portuguese for interactive multi-criteria decision making) is extended and employed to prioritize the alternative suppliers. Finally, the applicability and effectiveness of the proposed method is verified by a practical example of polymer manufacturing company and a comparison analysis with existing methods.


Sign in / Sign up

Export Citation Format

Share Document