Short pre-sowing treatment of potato tubers with low temperature to suppress Globodera rostochiensis invasion

Author(s):  
V.V. Lavrova ◽  
◽  
E.M. Matveeva ◽  
M.I. Sysoeva ◽  
◽  
...  
Author(s):  
Elsadig A. Eltayeb ◽  
Sana Salem Al-Sinani ◽  
I. A. Khan

Tubers from 7 potato varieties were analyzed for their rates of glycoalkaloid accumulation in response to stresses of three types of mechanical injury and low temperature storage. Mechanical injuries were found to greatly stimulate glycoalkaloid accumulation in both peel and flesh of tubers. The extent of glycoalkaloid accumulation appears to depend on variety, type of mechanical injury, and storage period. Most of the injury-stimulated glycoalkaloid accumulation occurred within 7 and 14 days after treatment. Cutting the tubers resulted in the highest content of glycoalkaloids both in flesh and peel up to levels that exceeded the upper safety limit of 200 mg/kg FW. Injury stimulated α-solanine accumulation in stored potato tubers is more than α-chaconine, resulting in a decrease in the α-chaconine: α-solanine ratio. When tubers were stored at low temperature, the rate of glycoalkaloid accumulation was found to be independent of the glycoalkaloid level at harvest. The greatest increase in total glycoalkaloid content of the seven varieties was found after two weeks of storage at both 4 ºC and 10 ºC. Further storage at these temperatures resulted in a decrease in the rate of glycoalkaloid accumulation in most of them. At 10 ºC glycoalkaloid content tended to increase more rapidly than at 4 ºC. The α-solanine content of the tubers showed an increase following low temperature storage.  


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 526B-526 ◽  
Author(s):  
Robert W. Blenkinsop ◽  
Leslie J. Copp ◽  
Alejandro G. Marangoni ◽  
Rickey Y. Yada

Following exposure to low temperatures (i.e., <10 °C), potato tubers undergo low-temperature sweetening (LTS), the conversion of starch to sugars. This phenomenon is of great importance to potato chip processors because high levels of reducing sugars lead to undesirable nonenzymatic browning during potato chip frying operations. The purpose of this study was to elucidate the biochemical differences in carbohydrate metabolism between a tolerant (ND 860-2) and a sensitive (Novachip) cultivar during 4 °C storage. On chilling, there was an increase in the levels of sucrose, fructose, and glucose in both cultivars, with levels being at least 2-fold higher in the sensitive cultivar. Increased levels of ATP and NADH, along with a higher respiratory rate observed in the tolerant tubers, collectively indicate a higher metabolic rate in the LTS-tolerant cultivar. ATP- and pyrophosphate-dependent phosphofructokinase activity was similar in both cultivars. Higher levels of ethanol and lactate were also observed in ND 860-2, suggesting a greater flux of sugars via anaerobic respiration. No significant differences were observed in enzymatic activities in the oxidative pentose phosphate pathway (PPP) or in levels of NADPH, thereby suggesting that the PPP does not play a role in conferring LTS tolerance. Therefore, we propose that LTS-tolerant potatoes may maintain low tissue sugar concentrations via an overall increased metabolism, rather than differing in one specific metabolic step. This increased metabolic rate does not appear to be due to greater enzyme expression (i.e., coarse control) but, rather, to a greater overall flux of carbohydrates through glycolysis and respiration.


1997 ◽  
Vol 113 (2) ◽  
pp. 503-510 ◽  
Author(s):  
T. H. Nielsen ◽  
U. Deiting ◽  
M. Stitt

2021 ◽  
Vol 265 ◽  
pp. 05011
Author(s):  
Mikhail L. Golovin ◽  
Valentina S. Orlova ◽  
Svetlana E. Mazina ◽  
Valery G. Yakunin ◽  
Sergei V. Kuznetsov ◽  
...  

A study of the effect of low-temperature plasma on potato tubers was carried out. A comparative assessment of changes in the rate of germination, the size of shoots and the mass of shoots was carried out. Changes in the number of bacteria and fungi on the surface of tubers were analysed for different durations of exposure. It was found that growth characteristics did not change. The number of bacteria on the surface of tubers was significantly reduced due to the exposure to low-temperature plasma.


Sign in / Sign up

Export Citation Format

Share Document