scholarly journals The effect of long time wear on thermal comfort properties of various parts of denim trousers

Author(s):  
Lubos Hes ◽  
Marie Manákova ◽  
Olga Paraska

In this paper, thermal comfort parameters of various parts of selected standard denim trousers subject to 2 years of daily wearing are experimentally investigated, both under dry and wet state. The study is based on the use of fast testing instruments, which require small testing samples and quick measurement. From the study, it is inferred that wearing of denim trouser really changes the properties, some of them negatively, but the affected areas are small.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Pamela Miśkiewicz ◽  
Magdalena Tokarska ◽  
Iwona Frydrych ◽  
Marcin Makówka

AbstractThe article presents the modification of flame-retardant fabric surfaces made of basalt, Nomex®, and cotton fabric to improve their selected thermal comfort properties. The modification consisted of depositing on the fabric surface by magnetron sputtering the metal (aluminum) and ceramic (zirconium (IV) oxide) coatings with a thickness of 1 μm and 5 μm. Flame-retardant fabrics have been chosen because of the desire to apply them to gloves intended for the use in hot-work environments. The article presents the results of testing reference samples and their modifications, which were subjected to the test of resistance to contact heat for contact temperatures of 100°C and 250°C, resistance to thermal radiation and examined their selected thermal comfort parameters, i.e., the thermal conductivity coefficient and heat absorption coefficient. Almost the 1st efficiency level for contact heat was reached for basalt fabric coated with zirconium (IV) oxide with a thickness of 5 μm. The 1st level of protection against heat radiation was obtained for all reference and modified samples. Based on the Kruskal–Wallis test, it was noticed that a significant change in parameter values is caused by the modification with 5 μm thick coating.


Author(s):  
Adine Gericke ◽  
Jiri Militky ◽  
Mohanapriya Venkataraman ◽  
Hester J. Steyn ◽  
Jana Vermaas

2020 ◽  
Vol 32 (5) ◽  
pp. 631-643
Author(s):  
Sedat Özer ◽  
Yaşar Erayman Yüksel ◽  
Yasemin Korkmaz

PurposeDesign of bedding textiles that contact the human body affects the sleep quality. Bedding textiles contribute to comfort sense during the sleep duration, in addition to ambient and bed microclimate. The purpose of this study is to evaluate the effects of different layer properties on the compression recovery and thermal characteristics of multilayer bedding textiles.Design/methodology/approachIn this study, woven and knitted multilayer bedding textiles were manufactured from fabric, fiber, sponge and interlining, respectively. Different sponge thickness, fiber and interlining weight were used in the layers of samples. Later, the pilling resistance, compression and recovery, air permeability and thermal conductivity of multilayer bedding textiles were investigated.FindingsThe results indicated that samples with the higher layer weight and thickness provide better compression recovery and lower air permeability properties. It was also found that knitted surfaces show the higher air permeability than the woven surfaces depending on the fabric porosity. Layer properties have insignificant effect on the thermal conductivity values.Originality/valueWhile researchers mostly focus on thermal comfort properties of garments, there are limited studies about comfort properties of bedding textiles in the literature. Furthermore, compression recovery properties of bedding textiles have also a great importance in terms of comfort. Originality of this study is that these properties were analyzed together.


2015 ◽  
Vol 10 (1) ◽  
pp. 155892501501000 ◽  
Author(s):  
Nida Oğlakcioğlu ◽  
Ahmet Çay ◽  
Arzu Marmarali ◽  
Emel Mert

Engineered yarns are used to provide better clothing comfort for summer garments because of their high levels of moisture and water vapor management. The aim of this study was to investigate the characteristics of knitted structures that were produced using different types of polyester yarns in order to achieve better thermal comfort properties for summer clothing. However they are relatively expensive. Therefore, in this study engineered polyester yarns were combined with cotton and lyocell yarns by plying. This way, the pronounced characteristics of these yarns were added to the knitted structure as well. Channeled polyester, hollow polyester, channeled/hollow blended polyester, cotton, and lyocell yarns were plied with each other and themselves. Then, single jersey structures were knitted using these ply yarn combinations and air permeability, thermal resistance, thermal absorptivity, water vapor permeability, moisture management, and drying properties were tested. The results indicate that channeled PES fabrics are advantageous for hot climates and high physical activities with regards to high permeability and moisture transfer and also to fast drying properties. Besides, air permeability and thermal properties improved through the combination of lyocell yarn with engineered polyester yarns. However, the use of lyocell or cotton with engineered yarns resulted in a to a decrease in moisture management properties and an increase in drying times


Author(s):  
S H Eryuruk ◽  
V Koncar ◽  
F Kalaoglu ◽  
H Gidik ◽  
X Tao

2018 ◽  
Vol 44 ◽  
pp. 00186
Author(s):  
Małgorzata Wesołowska ◽  
Marta Laska

The proper level of comfort conditions is one of the main goal when designing HVAC systems in buildings. It influences our self-being, our health and productivity. Thermal comfort is a complex issue and relates to indoor air parameters and personal factors. The publication presents the outcome of the research undertaken in one of the lecture room at Wroclaw University of Science and Technology, Poland. It consisted of measurements of comfort parameters, questionnaire survey and PMV and PPD calculations based on different approaches.


Sign in / Sign up

Export Citation Format

Share Document