scholarly journals SOFTWARE DE AGRICULTURA DE PRECISÃO PARA MONITORAR PARÂMETROS AMBIENTAIS DE CONFORTO TÉRMICO NA BOVINOCULTURA DE LEITE / PRECISION FARMING SOFTWARE TO MONITOR ENVIRONMENTAL THERMAL COMFORT PARAMETERS IN DAIRY CATTLE

2014 ◽  
Vol 8 (2) ◽  
pp. 112
Author(s):  
Mario MOLLO NETO ◽  
I. de A. Nääs
2018 ◽  
Vol 44 ◽  
pp. 00186
Author(s):  
Małgorzata Wesołowska ◽  
Marta Laska

The proper level of comfort conditions is one of the main goal when designing HVAC systems in buildings. It influences our self-being, our health and productivity. Thermal comfort is a complex issue and relates to indoor air parameters and personal factors. The publication presents the outcome of the research undertaken in one of the lecture room at Wroclaw University of Science and Technology, Poland. It consisted of measurements of comfort parameters, questionnaire survey and PMV and PPD calculations based on different approaches.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4947
Author(s):  
Nina Szczepanik-Scislo ◽  
Jacek Schnotale

This study aimed to develop a new concept for an air terminal device for a VAV (variable air volume) ventilation system that would improve overall ventilation efficiency under a varying air supply volume. In VAV systems, air volume is modified according to the thermal load in each ventilated zone. However, lowering the airflow may cause a lack of proper air distribution and lead to the degradation of hygienic conditions. To combat this phenomenon, an air terminal device with an adapting geometry to stabilize the air throw, such that it remains constant despite the changing air volume supplied through the ventilation system, was designed and studied. Simulations that were performed using the RNG k–ε model in the ANSYS Fluent application were later validated on a laboratory stand. The results of the study show that, when using the newly proposed terminal device with an adaptive geometry, it is possible to stabilize the air throw. The thermal comfort parameters such as the PMV (predicted mean vote) and PPD (predicted percentage of dissatisfied) proved that thermal comfort was maintained in a person-occupied area regardless of changing airflow though the ventilation system.


2016 ◽  
Vol 28 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Sena Terliksiz ◽  
Fatma Kalaoğlu ◽  
Selin Hanife Eryürük

Purpose – Sleep is a vital and a basic activity of human life and it is a physiological need for human body. Sleep quality is directly influenced by the comfort conditions of sleep environment. The purpose of this paper is to define the role of textile materials utilized as bed fabrics on air and mass transfer from the human body. Design/methodology/approach – Thermal conductivity, thermal resistance, thickness, water vapour permeability and air permeability properties of fabrics were analyzed and statistically evaluated. Thermal conductivity and resistance measurements were performed in Alambeta test instrument. Water vapour permeability tests were done according to the Rotating Platform method, and air permeability was measured in FX 3300 Textest air permeability tester. Relationships between comfort parameters were statistically evaluated with correlation analysis. Findings – Comfort is a major concept in the determination of overall life quality as well as sleep quality of a resting person. Therefore academic studies about thermal comfort prediction of sleep environment and bed surface fabrics are of great importance. This study investigates conventional mattress ticking fabrics in terms of comfort parameters and defines the important fabric properties on comfort parameters. Originality/value – Sleep comfort is a promising area in textile comfort studies with its dynamics different from body thermal comfort during daily life. However, in general comfort studies are about garment materials which are in direct contact with the skin. This study tries to define the comfort status of textile materials which have indirect contact with the human body surface during sleep duration.


2021 ◽  
Vol 11 (24) ◽  
pp. 11979
Author(s):  
Patricia I. Benito ◽  
Miguel A. Sebastián ◽  
Cristina González-Gaya

This paper focuses on the use of Bayesian networks for the industrial thermal comfort issue, specifically in industries in Northern Argentina. Mined data sets that are analyzed and exploited with WEKA and ELVIRA tools are discussed. Thus, networks giving the predictive value of thermal comfort for different pairs of indoor temperature and humidity values according to activity, time, and season, verified in the workplace, were obtained. The results obtained were compared to other statistical models of linear regression used for thermal comfort, thus observing that comfort temperature values are within a same range, yet the network offered more information since a range of options for interior design parameters (temperature/relative humidity) was offered for different work, time, and season conditions. Additionally, if compared with static models of heat exchange, the contribution of Bayesian networks is noted when considering a context of actual operability and adaptability conditions to the environment, which is promising for developing thermal comfort intelligent systems, especially for the development of sustainable settings within the Industry 4.0 paradigm.


2021 ◽  
Author(s):  
Balázs Cakó ◽  
Dalma Lovig ◽  
András Ózdi

AbstractDuring the following research project, the effects of an electrically heated window on the thermal comfort parameters of permanently occupied spaces were examined. A thermal manikin and a Testo 400 comfort-meter were used for the tests. To characterize the space, the predicted mean vote and predicted percentage of dis-satisfied method was applied. The examination of the comfort indices took place in the vicinity of an electrically heated window glass. During the measurements the surface temperature of the glazing was changed, alongside the distance from the glazing at which the measuring instruments were set up. The project aimed to assess the results measured by the thermal manikin and assess the usability of heated window glazing, taking thermal comfort into account.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Emmanuel Lubango Ndetto ◽  
Andreas Matzarakis

A long-term simulation of urban climate was done using the easily available long-term meteorological data from a nearby synoptic station in a tropical coastal city of Dar es Salaam, Tanzania. The study aimed at determining the effects of buildings’ height and street orientations on human thermal conditions at pedestrian level. The urban configuration was represented by a typical urban street and a small urban park near the seaside. The simulations were conducted in the microscale applied climate model of RayMan, and results were interpreted in terms of the thermal comfort parameters of mean radiant (Tmrt) and physiologically equivalent (PET) temperatures. PET values, high as 34°C, are observed to prevail during the afternoons especially in the east-west oriented streets, and buildings’ height of 5 m has less effect on the thermal comfort. The optimal reduction ofTmrtand PET values for pedestrians was observed on the nearly north-south reoriented streets and with increased buildings’ height especially close to 100 m. Likewise, buildings close to the park enhance comfort conditions in the park through additional shadow. The study provides design implications and management of open spaces like urban parks in cities for the sake of improving thermal comfort conditions for pedestrians.


Sign in / Sign up

Export Citation Format

Share Document