scholarly journals THE CHANGES IN DISTRIBUTION OF NMDA- AND AMPA-RECEPTORS IN RETINOCOLLICULAR SYNAPSES

2021 ◽  
Vol 67 (3) ◽  
pp. 10-16
Author(s):  
H.V. Dumanska ◽  
◽  
O.V. Rikchalsky ◽  
N.S. Veselovsky ◽  
◽  
...  

We investigated the changes in distribution of the NMDA- and AMPA-receptors in the synapses in the in vitro model of the retinocollicular pathway. The model was a primary coculture of the retinal cells and superficial superior colliculus (SSC) neurons. Evoked postsynaptic currents (ePSCs) were recorded in SSC neurons in response to local electrical extracellular stimulation of the afferent retinal ganglion cells’ (RGC) axons. We analyzed the changes in the kinetic characteristics of ePSCs at different holding potentials during cocultivation. The results obtained reflect that NMDA receptors play an essential role in the formation of the retinocollicular synapses. After the formation of retinocollicular connections, the main role in the sensory signal transmission belongs to AMPA receptors. Thus, the data obtained indicate the specific dynamic changes of the functional roles of NMDA- and AMPA-receptors in the forma- tion and development of the retinocollicular synaptic contacts.

PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0207190 ◽  
Author(s):  
Jasmin Lauzi ◽  
Fabian Anders ◽  
Hanhan Liu ◽  
Norbert Pfeiffer ◽  
Franz Grus ◽  
...  

1997 ◽  
Vol 77 (1) ◽  
pp. 511-516 ◽  
Author(s):  
William Guido ◽  
Fu-Sun Lo ◽  
Reha S. Erzurumlu

Guido, William, Fu-Sun Lo, and Reha S. Erzurumlu. An in vitro model of the kitten retinogeniculate pathway. J. Neurophysiol. 77: 511–516, 1997. An organotypic explant coculture method is described for the developing retinogeniculate pathway of the cat. Retinal explants and thalamic slices containing the dorsal lateral geniculate nucleus (LGN), derived from early postnatal kittens, can be grown in serum-free culture medium for several days. In such cultures, retinal ganglion cells (RGCs) and LGN neurons retained their age-specific morphological features and developed functional connections. Labeling of RGCs and their processes with DiI showed that all three major classes of RGCs (α/Y, β/X, γ/W) were present in cocultured retinal explants. Retinal axons readily regenerated into thalamic slices and, over time, developed arbors within the LGN. Retrograde labeling from the LGN traced the origin of these axons almost exclusively to α-cells in the retina. In vitro intracellular recordings indicated that LGN cells maintained their basic electrophysiological properties in coculture. Current injection generated action potentials, and, at hyperpolarized levels, it led to low-threshold Ca2+ spiking. Regenerated retinal axons also formed functional connections with LGN neurons. Electrical stimulation of the retinal explant elicited excitatory postsynaptic responses (EPSPs) in LGN cells. Drop application of specific glutamate antagonists indicated that EPSPs had both N-methyl-d-aspartate (NMDA) and non-NMDA receptor components. The morphology of the LGN neurons was examined after intracellular injections of biocytin during recording. Labeled cells were very similar to those of early postnatal kittens. Although, in general, they had relatively small soma and simple dendritic branching patterns, a few could be recognized as X- or Y-cells. Thus the coculture model can be used to assay the regenerative propensity of different types of RGCs during development.


2007 ◽  
Vol 97 (3) ◽  
pp. 2067-2074 ◽  
Author(s):  
Joyce Keifer ◽  
Zhao-Qing Zheng ◽  
Dantong Zhu

The mitogen-activated protein kinase (MAPK) signal transduction pathways have been implicated in underlying mechanisms of synaptic plasticity and learning. However, the differential roles of the MAPK family members extracellular signal-regulated kinase (ERK) and p38 in learning remain to be clarified. Here, an in vitro model of classical conditioning was examined to assess the roles of ERK and p38 MAPK in this form of learning. Previous studies showed that NMDA-mediated trafficking of synaptic glutamate receptor 4 (GluR4)–containing AMPA receptors (AMPARs) underlies conditioning in this preparation and that this is accomplished through GluR4 interactions with the immediate-early gene protein Arc and the actin cytoskeleton. Here, it is shown that attenuation of conditioned responses (CRs) by ERK and p38 MAPK antagonists is associated with significantly reduced synaptic localization of GluR4 subunits. Western blotting reveals that p38 MAPK significantly increases its activation levels during late stages of conditioning during CR expression. In contrast, ERK MAPK activation is enhanced in early conditioning during CR acquisition. The results suggest that MAPKs have a central role in the synaptic delivery of GluR4-containing AMPARs during in vitro classical conditioning.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Sign in / Sign up

Export Citation Format

Share Document