scholarly journals Statistical analysis of the orbital motion of selected Earth’s artificial satellites during the 24th cycle of solar activity

2021 ◽  
Vol 37 (6) ◽  
pp. 62-84
Author(s):  
A.I. Bilinsky ◽  
O.A. Baran ◽  
M.I Stodilka ◽  
Y.B. Vovchyk ◽  
M.M. Koval’chuk
2021 ◽  
Author(s):  
O.A. Andreeva ◽  
◽  
V.I. Abramenko ◽  
V.M. Malashchuk ◽  
◽  
...  
Keyword(s):  

1990 ◽  
Vol 142 ◽  
pp. 409-413
Author(s):  
V. G. Kurt

A statistical analysis of solar flare X-rays and interplanetary particle fluxes, measured onboard VENERA-13, 14 Spacecraft, was performed. The correlation of fluences for different manifestations of solar flares is strong, especially for fast electrons and hard and soft X-ray emissions. Frequency dependence on fluence value ϵi for practically all Kinds of solar flare emission can be described by power law ν (ϵ > ϵO) ∼ ϵ−0.45±0.15 which does not change significantly with solar activity. For different Hα flare importances the values of ϵi were obtained. It is proposed that appearance of certain energy flare frequency is strongly dependent on some scale factor.


2015 ◽  
Vol 56 (11) ◽  
pp. 2542-2551 ◽  
Author(s):  
Geoffrey Andima ◽  
Edward Jurua ◽  
Emirant Bertillas Amabayo ◽  
John Bosco Habarulema

2020 ◽  
Vol 25 (4) ◽  
pp. 308-323
Author(s):  
V. H. Komendant ◽  

Purpose: The artificial satellites drag in the atmosphere remains an urgent problem to date. In this work, the artificial satellites data are used in order to study the atmosphere state under various manifestations of solar and geomagnetic activity. The selected satelites were moving uncontrollable being good indicators of the upper atmosphere state. The B-star (drag term) drag coefficient is used in this work. This term is used in the SGP and SDP models to take into account the resistance of the atmosphere to the satelite orbital motion. The data of the drag of two artificial satellites, one moving in elliptical and the other in circular orbits at midlatitudes (orbital plane angles of 58°-60°) were considered. These data include the end of the 23rd solar activity cycle, as well as the growth, the maximum and the decay phases of the 24th solar cycle (years 2005–2017). Seven periods of anomalous drag of the satellites were analyzed. They are: 4 monthly periods (two in 2005 and two in 2011) and 3 yearly periods (within 19.07.2014 to 22.08.2015), five-year long (2005–2010) and six-year long (2011–2017) periods. Design/methodology/approach: The periodogram analysis was made. This allowed to reveal the periodic processes in changes in the state of the atmosphere of different duration. The correlation coefficients of the B-star drag term with the indices of solar and geomagnetic activity were calculated. The analysis of extreme drag of the satellites in the periods of the increased solar and geomagnetic activity (intervals of observation lasting a month) was made. Findings: Using the solar and geomagnetic data we found that some month-long part of the anomalous drag periods were followed by flares on the Sun and the arrival of the coronal mass ejections into the near-Earth space. At time intervals of yearlong observations the highest values (0.5-0.7) were obtained for the coefficients of the B-star parameter correlation with the solar activity indices – solar radiation at the wavelength of 10.7 cm, F10.7, and Lyman alpha radiation, Lα. At monthly time intervals, the largest values of the correlation coefficients were obtained for the B-stars with the electron fluxes with energies above 0.6 and 2 MeV, E, (0.3-0.5), the Lyman alpha radiation, Lα, (0.58–0.73 for a сircular orbit satellite), and the solar constant, TSI, (0.3–0.6), as well as the geomagnetic storms intensity index, Dst , (0.66–0.69). Periodogram calculations show the presence of a whole spectrum of periods in the deceleration of a circular orbit satellite and a dedicated period for an elliptical orbit satellite. Conclusions: The B-star drag term dependences on the indices of solar and geomagnetic activity during some periods of their intensification for the 23–24 cycles of solar activity are considered. The periodogram analysis made together with the analysis of the conditions and parameters of space weather allows to see the general and more detailed picture of the solar and geomagnetic activity influence on the change in the motion of the satellite in the atmosphere. The B-star drag term helps to consider only the atmosphere influence on the artificial satellite movement in the near-Earth space. Key words: artificial satellite, atmosphere, artificial satellite drag, solar activity, geomagnetic activity, space weather


2021 ◽  
Vol 37 (6) ◽  
pp. 310-325
Author(s):  
A. I. Bilinsky ◽  
O. A. Baran ◽  
M. I. Stodilka ◽  
Ye. B. Vovchyk ◽  
M. M. Koval’chuk

2000 ◽  
Vol 18 (6) ◽  
pp. 618-628 ◽  
Author(s):  
A. V. Mikhailov ◽  
T. Yu. Leschinskaya ◽  
M. Förster

Abstract. A statistical analysis of two peaks (pre-midnight and post-midnight) occurrence in NmF2 daily variations was made on a latitudinal chain of four ionosonde stations in the Eurasian longitudinal sector. Overall 6182 cases of the first and 5600 cases of the second peak occurrence were analyzed using all available foF2 observations for the years of solar maximum and minimum. Well-pronounced and systematic variations with season and solar activity were revealed in the occurrence probability of the peaks, their amplitude and timing. The pattern of both peaks occurrence is similar during winter and equinoxes for midlatitude stations implying one and the same mechanism of their formation. The pre-midnight summer peak shows specific variations in particular during solar maximum pointing to a different mechanism controlling its appearance. Possible mechanisms of both peaks formation are discussed.Key words: Ionosphere (electric fields and currents; ionosphere-magnetosphere interactions; mid-latitude ionosphere)


Sign in / Sign up

Export Citation Format

Share Document