Non-extensive statistical analysis on solar activity dependence of magnetospheric dynamics

2018 ◽  
Vol 167 ◽  
pp. 96-106
Author(s):  
Sumesh Gopinath ◽  
G. Santhosh Kumar ◽  
P.R. Prince
2021 ◽  
Vol 5 (4) ◽  
pp. 1-9
Author(s):  
K. K. Ajith ◽  
◽  
S. Tulasi Ram ◽  
GuoZhu Li ◽  
M. Yamamoto ◽  
...  

1990 ◽  
Vol 142 ◽  
pp. 409-413
Author(s):  
V. G. Kurt

A statistical analysis of solar flare X-rays and interplanetary particle fluxes, measured onboard VENERA-13, 14 Spacecraft, was performed. The correlation of fluences for different manifestations of solar flares is strong, especially for fast electrons and hard and soft X-ray emissions. Frequency dependence on fluence value ϵi for practically all Kinds of solar flare emission can be described by power law ν (ϵ > ϵO) ∼ ϵ−0.45±0.15 which does not change significantly with solar activity. For different Hα flare importances the values of ϵi were obtained. It is proposed that appearance of certain energy flare frequency is strongly dependent on some scale factor.


2015 ◽  
Vol 56 (11) ◽  
pp. 2542-2551 ◽  
Author(s):  
Geoffrey Andima ◽  
Edward Jurua ◽  
Emirant Bertillas Amabayo ◽  
John Bosco Habarulema

2021 ◽  
Vol 39 (5) ◽  
pp. 929-943
Author(s):  
Adriane Marques de Souza Franco ◽  
Rajkumar Hajra ◽  
Ezequiel Echer ◽  
Mauricio José Alves Bolzan

Abstract. Seasonal features of geomagnetic activity and their solar-wind–interplanetary drivers are studied using more than five solar cycles of geomagnetic activity and solar wind observations. This study involves a total of 1296 geomagnetic storms of varying intensity identified using the Dst index from January 1963 to December 2019, a total of 75 863 substorms identified from the SuperMAG AL/SML index from January 1976 to December 2019 and a total of 145 high-intensity long-duration continuous auroral electrojet (AE) activity (HILDCAA) events identified using the AE index from January 1975 to December 2017. The occurrence rates of the substorms and geomagnetic storms, including moderate (-50nT≥Dst>-100nT) and intense (-100nT≥Dst>-250nT) storms, exhibit a significant semi-annual variation (periodicity ∼6 months), while the super storms (Dst≤-250 nT) and HILDCAAs do not exhibit any clear seasonal feature. The geomagnetic activity indices Dst and ap exhibit a semi-annual variation, while AE exhibits an annual variation (periodicity ∼1 year). The annual and semi-annual variations are attributed to the annual variation of the solar wind speed Vsw and the semi-annual variation of the coupling function VBs (where V = Vsw, and Bs is the southward component of the interplanetary magnetic field), respectively. We present a detailed analysis of the annual and semi-annual variations and their dependencies on the solar activity cycles separated as the odd, even, weak and strong solar cycles.


2018 ◽  
Vol 8 ◽  
pp. A45 ◽  
Author(s):  
Yury V. Yasyukevich ◽  
Anna S. Yasyukevich ◽  
Konstantin G. Ratovsky ◽  
Maxim V. Klimenko ◽  
Vladimir V. Klimenko ◽  
...  

For the first time, by using a regression procedure, we analyzed the solar activity dependence of the winter anomaly intensity in the ionospheric F2-layer peak electron density (Nm F2) and in the Total Electron Content (TEC) on a global scale. We used the data from global ionospheric maps for 1998–2015, from GPS radio occultation observations with COSMIC, CHAMP, and GRACE satellites for 2001–2015, and ground-based ionosonde data. The fundamental features of the winter anomaly in Nm F2 and in TEC (spatial distribution and solar activity dependence) are similar for these parameters. We determined the regions, where the winter anomaly may be observed in principle, and the solar activity level, at which the winter anomaly may be recorded in different sectors. A growth in geomagnetic disturbance or in the solar activity level is shown to facilitate the winter anomaly intensity increase. Longitudinal variations in the winter anomaly intensity do not conform partly to the generally accepted Rishbeth theory. We consider the obtained results in the context of spatial and solar cycle variations in O/N2 ratio and thermospheric meridional wind. Additionally, we briefly discuss different definitions of the winter anomaly.


Sign in / Sign up

Export Citation Format

Share Document