scholarly journals Directional radiation properties of two impedance monopoles mounted on a perfectly conducting rectangular screen

2021 ◽  
Vol 26 (2) ◽  
pp. 54-66
Author(s):  
N. Yeliseyeva ◽  
◽  
S. Berdnik ◽  
V. Katrich ◽  
◽  
...  

Subject and Purpose. Two impedance resonant monopoles of electric length 0.2 £ l / l £ 0.3 are mounted on a rectangular screen perpendicularly to the screen surface and studied for the directional radiation properties (directive gain and radiation patterns) depending on the monopole separation and the side length and aspect ratio of the screen. Methods and Methodology. A three-dimensional diffraction vector problem of two impedance monopoles mounted on a perfectly conducting rectangular screen is solved in terms of the uniform geometric theory of diffraction. Allowances are made for the diffracted field asymptotics of the secondary diffraction at the screen edges and for the electric current distribution asymptotics of a thin impedance dipole in the free space. Results. For a lattice of two impedance monopoles mounted on a rectangular screen, 3-D programs have been developed for calculating its radiation patterns, directive gain Dmax at a radiation maximum, and radiation resistance in view of the secondary diffraction at the screen edges. The radiation pattern shaping for the diffraction and total fields and the directive gain Dmax have been analyzed depending on the monopole separation x / l  0.1...1, the screen side length x / l  1.2…4, and the screen aspect ratio W / L  0.5…3. It has been shown that the so obtained optimum separation x opt  0.65, optimum length Lopt and optimum ratio (W / L) opt make Dopt three times greater than the lowest Dmax value. Conclusions. The three-dimensional vector problem of field diffraction of two impedance monopoles mounted on an ideally conducting rectangular screen has been solved. It is of interest that given an optimum monopole separation xopt and an optimum side length Lopt of the square screen, a lattice of two monopoles offers a greater radiation resistance and a two times larger Dopt than a single monopole on the same screen does. The developed computational programs and the obtained numerical results enable efficient actual wireless communication systems to be modelled for both ideally conducting and impedance resonant monopoles.

Nanoscale ◽  
2017 ◽  
Vol 9 (46) ◽  
pp. 18311-18317 ◽  
Author(s):  
Yuan Gao ◽  
Yuanjing Lin ◽  
Zehua Peng ◽  
Qingfeng Zhou ◽  
Zhiyong Fan

Three-dimensional interconnected nanoporous structure (3-D INPOS) possesses high aspect ratio, large surface area, as well as good structural stability. Profiting from its unique interconnected architecture, the 3-D INPOS pseudocapacitor achieves a largely enhanced capacitance and rate capability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mana Iwai ◽  
Tatsuya Kikuchi ◽  
Ryosuke O. Suzuki

AbstractHigh-aspect ratio ordered nanomaterial arrays exhibit several unique physicochemical and optical properties. Porous anodic aluminum oxide (AAO) is one of the most typical ordered porous structures and can be easily fabricated by applying an electrochemical anodizing process to Al. However, the dimensional and structural controllability of conventional porous AAOs is limited to a narrow range because there are only a few electrolytes that work in this process. Here, we provide a novel anodizing method using an alkaline electrolyte, sodium tetraborate (Na2B4O7), for the fabrication of a high-aspect ratio, self-ordered nanospike porous AAO structure. This self-ordered porous AAO structure possesses a wide range of the interpore distance under a new anodizing regime, and highly ordered porous AAO structures can be fabricated using pre-nanotexturing of Al. The vertical pore walls of porous AAOs have unique nanospikes measuring several tens of nanometers in periodicity, and we demonstrate that AAO can be used as a template for the fabrication of nanomaterials with a large surface area. We also reveal that stable anodizing without the occurrence of oxide burning and the subsequent formation of uniform self-ordered AAO structures can be achieved on complicated three-dimensional substrates.


1991 ◽  
Vol 35 (04) ◽  
pp. 314-324
Author(s):  
Todd McComb

Using low-aspect-ratio flat ship theory, this paper defines a procedure to determine the position of a hull which is in equilibrium at some "fast" speed in terms of a given hull shape for the same hull at rest. This procedure is then used to find the equilibrium flow past a moving ship, when given the shape of the hull at rest. The method is then extended to find the hull configuration at various speeds based on either the configuration in the static case or at some other equilibrium speed, leading to a calculation of drag versus speed. Some general formulas and some simple examples are given.


1966 ◽  
Vol 56 (4) ◽  
pp. 925-936 ◽  
Author(s):  
I. N. Gupta

abstract The reciprocity theorem is used to obtain Rayleigh wave radiation patterns from sources on the surface of or within an elastic semi-infinite medium. Nine elementary line sources first considered are: horizontal and vertical forces, horizontal and vertical double forces without moment, horizontal and vertical single couples, center of dilatation (two dimensional case), center of rotation, and double couple without moment. The results are extended to the three dimensional case of similar point sources in a homogeneous half space. Haskell's results for the radiation patterns of Rayleigh waves from a fault of arbitrary dip and direction of motion are reproduced in a much simpler manner. Numerical results on the effect of the depth of these sources on the Rayleigh wave amplitudes are shown for a solid having Poisson's ratio of 0.25.


Author(s):  
Wai Hing Wong ◽  
Normah Mohd. Ghazali

Kertas kerja ini membincangkan simulasi berangka ke atas sinki haba saluran mikro dalam penyejukan alatan mikroelektronik. Model Dinamik Bendalir Berkomputer (CFD) tiga dimensi dibina menggunakan pakej komersil, FLUENT, untuk mengkaji fenomenon aliran bendalir dan pemindahan haba konjugat di dalam suatu sinki haba segi empat yang diperbuat daripada silikon. Model ditentusahkan dengan keputusan daripada uji kaji dan pengkajian berangka yang lepas untuk lingkungan nombor Reynolds kurang daripada 400 berdasarkan diameter hidraulik 86 mm. Kajian ini mengambil kira kesan kelikatan bendalir yang bersandaran dengan suhu dan keadaan aliran pra–membangun dari segi hidrodinamik dan haba. Model memberi maklumat tentang taburan suhu dan fluks haba yang terperinci di dalam sinki haba saluran mikro. Kecerunan suhu yang tinggi dicatat pada kawasan pepejal berdekatan dengan sumber. Fluks haba paling tinggi didapati pada dinding tepi saluran mikro diikuti oleh dinding atas dan bawah. Purata pekali pemindahan haba yang lebih tinggi bagi silikon menjadikan ia bahan binaan sinki haba saluran mikro yang lebih baik berbanding dengan kuprum dan aluminium. Peningkatan nisbah aspek saluran mikro yang bersegi empat memberi kecekapan penyejukan yang lebih tinggi kerana kelebaran saluran yang berkurangan memberi kecerunan halaju yang lebih tinggi dalam saluran. Nisbah aspek yang optimum yang diperoleh adalah dalam lingkungan 3.7 – 4.1. Kata kunci: Saluran mikro, CFD, FLUENT, simulasi berangka, penyejukan mikroelektron The paper discusses the numerical simulation of a micro–channel heat sink in microelectronics cooling. A three–dimensional Computational Fluid Dynamics (CFD) model was built using the commercial package, FLUENT, to investigate the conjugate fluid flow and heat transfer phenomena in a silicon–based rectangular microchannel heatsink. The model was validated with past experimental and numerical work for Reynolds numbers less than 400 based on a hydraulic diameter of 86 mm. The investigation was conducted with consideration of temperaturedependent viscosity and developing flow, both hydrodynamically and thermally. The model provided detailed temperature and heat flux distributions in the microchannel heatsink. The results indicate a large temperature gradient in the solid region near the heat source. The highest heat flux is found at the side walls of the microchannel, followed by top wall and bottom wall due to the wall interaction effects. Silicon is proven to be a better microchannel heatsink material compared to copper and aluminum, indicated by a higher average heat transfer. A higher aspect ratio in a rectangular microchannel gives higher cooling capability due to high velocity gradient around the channel when channel width decreases. Optimum aspect ratio obtained is in the range of 3.7 – 4.1. Key words: Microchannel, CFD, FLUENT, numerical simulation, microeletronics cooling


2016 ◽  
Vol 9 (10) ◽  
pp. 3803-3815 ◽  
Author(s):  
Gheorghe-Teodor Bercea ◽  
Andrew T. T. McRae ◽  
David A. Ham ◽  
Lawrence Mitchell ◽  
Florian Rathgeber ◽  
...  

Abstract. We present a generic algorithm for numbering and then efficiently iterating over the data values attached to an extruded mesh. An extruded mesh is formed by replicating an existing mesh, assumed to be unstructured, to form layers of prismatic cells. Applications of extruded meshes include, but are not limited to, the representation of three-dimensional high aspect ratio domains employed by geophysical finite element simulations. These meshes are structured in the extruded direction. The algorithm presented here exploits this structure to avoid the performance penalty traditionally associated with unstructured meshes. We evaluate the implementation of this algorithm in the Firedrake finite element system on a range of low compute intensity operations which constitute worst cases for data layout performance exploration. The experiments show that having structure along the extruded direction enables the cost of the indirect data accesses to be amortized after 10–20 layers as long as the underlying mesh is well ordered. We characterize the resulting spatial and temporal reuse in a representative set of both continuous-Galerkin and discontinuous-Galerkin discretizations. On meshes with realistic numbers of layers the performance achieved is between 70 and 90 % of a theoretical hardware-specific limit.


1970 ◽  
Vol 185 (1) ◽  
pp. 407-424 ◽  
Author(s):  
H. R. M. Craig ◽  
H. J. A. Cox

A comprehensive method of estimating the performance of axial flow steam and gas turbines is presented, based on analysis of linear cascade tests on blading, on a number of turbine test results, and on air tests of model casings. The validity of the use of such data is briefly considered. Data are presented to allow performance estimation of actual machines over a wide range of Reynolds number, Mach number, aspect ratio and other relevant variables. The use of the method in connection with three-dimensional methods of flow estimation is considered, and data presented showing encouraging agreement between estimates and available test results. Finally ‘carpets’ are presented showing the trends in efficiencies that are attainable in turbines designed over a wide range of loading, axial velocity/blade speed ratio, Reynolds number and aspect ratio.


Sign in / Sign up

Export Citation Format

Share Document