scholarly journals Features of Radiation-Defect Annealing in n-Ge Single Crystals Irradiated with High-Energy Electrons

2019 ◽  
Vol 64 (2) ◽  
pp. 151
Author(s):  
S. V. Luniov ◽  
A. I. Zimych ◽  
M. V. Khvyshchun ◽  
V. T. Maslyuk ◽  
I. G. Megela

The isothermal annealing of n-Ge single crystals irradiated with 10-MeV electrons to the fluence Φ = 5 × 1015 cm−2 has been studied. On the basis of the measured temperature dependences of the Hall constant and by solving the electroneutrality equations, the concentrations of radiation-induced defects (A-centers) in irradiated n-Ge single crystals are calculated both before and after the annealing. An anomalous increase of the Hall constant is found, when the irradiated n-Ge single crystals were annealed at Tan = 403 K for up to 3 h. The annealing at the temperature Tan = 393 K for 1 h gave rise to the np conversion in the researched crystals. The revealed effects can be explained by the concentration growth of A-centers owing to the generation of vacancies at the annealing of disordered crystal regions.

1989 ◽  
Vol 32 (3) ◽  
pp. 198-203
Author(s):  
A. N. Georgobiani ◽  
M. B. Kotlyarevskii ◽  
B. P. Dement'ev ◽  
V. N. Mikhalenko ◽  
N. V. Serdyuk ◽  
...  

Author(s):  
С.В. Пляцко ◽  
Л.В. Рашковецкий

AbstractThe effect of a fast neutron flux (Φ = 10^14–10^15 cm^–2) on the electrical and photoluminescence properties of p -CdZnTe single crystals is studied. Isothermal annealing is performed ( T = 400–500 K), and the activation energy of the dissociation of radiation-induced defects is determined at E _D ≈ 0.75 eV.


1995 ◽  
Author(s):  
Andrej O. Matkovskii ◽  
D. Y. Sugack ◽  
Sergii B. Ubizskii ◽  
I. V. Kityk ◽  
Marian Kuzma

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6955
Author(s):  
Nimitha S. Prabhu ◽  
Hiriyur Mallaiah Somashekarappa ◽  
M. I. Sayyed ◽  
Hamid Osman ◽  
Sultan Alamri ◽  
...  

A Yb3+-doped borate glass system was examined for the structural and optical modifications after γ-irradiation. Among the studied 10BaO-20ZnO-20LiF-(50-x)B2O3-xYb2O3 (x = 0.1, 0.5, 0.7, and 1.0 mol%) glasses, the 10BaO-20ZnO-20LiF-49.9B2O3-0.1Yb2O3 glass showed the highest thermoluminescence intensity, trap density, and trap depth. The glass was irradiated with the optimum γ-dose of 1 kGy towards the analysis of radiation-induced defects. The amorphous nature was preserved before and after irradiation. The glass density slightly increased after irradiation. The structural rearrangement was evident from the Fourier transform infrared spectroscopy by the appearance and disappearance of some bonds after γ-irradiation. The transformation of [BO4] units into [BO3] units and non-bridging oxygens was deduced. The color of the glass darkened after irradiation and the optical absorption intensity enhanced between 250 and 700 nm. The optical bandgap reduced and Urbach energy increased upon γ-dose exposure. The electron spin resonance of the irradiated glass exhibited two signals at g = 2.0167 and g = 1.9938, corresponding to the non-bridging oxygen hole center and Boron E’-center, respectively.


2020 ◽  
Vol 31 (21) ◽  
pp. 19429-19436
Author(s):  
A. Chroneos ◽  
D. D. Kolesnikov ◽  
I. A. Taranova ◽  
A. V. Matsepulin ◽  
R. V. Vovk

AbstractA comparative analysis of the changes in the fluctuation conductivity and characteristics of the superconducting state of YBa2Cu3O7–δ single crystals caused by various types of defects is carried out. These defects appeared due to irradiation with high-energy electrons (radiation doses from 1.4 to 8.8 1018 cm–2), changes in oxygen deficiency (0.08 ≤ δ ≤ 0.23) due to annealing at different temperatures, or doping with praseodymium (Y1–zPrzBa2Cu3O7−δ, 0 ≤ z ≤ 0.5 at optimal oxygen concentration). It is shown that the introduction of such defects leads to a significant expansion of the temperature range of the existence of excess conductivity, and upon doping with praseodymium, it also leads to the appearance of a thermally activated deflection on the temperature dependence of the electrical resistance. The effect of such defects on the superconducting transition temperature, Tc, and the coherence length along the c axis, ξc(0), is studied. In particular, ξc(0) more than quadruples (at z = 0.43), while the 2D-3D crossover point shifts towards higher temperatures. Possible reasons for the suppression of superconductivity in YBa2Cu3O7–δ upon irradiation with fast electrons and the qualitatively different temperature dependences of its resistivity in the basal plane, ρab (T), are discussed.


Author(s):  
D.V. Ananchenko ◽  
S.V. Nikiforov ◽  
V.N. Kuzovkov ◽  
A.I. Popov ◽  
G.R. Ramazanova ◽  
...  

2005 ◽  
Vol 483-485 ◽  
pp. 365-368 ◽  
Author(s):  
Giovanni Alfieri ◽  
Edouard V. Monakhov ◽  
Margareta K. Linnarsson ◽  
Bengt Gunnar Svensson

Deep level transient spectroscopy (DLTS) was employed to investigate the annealing behaviour and thermal stability of radiation induced defects in nitrogen doped 4H-SiC epitaxial layers, grown by chemical vapor deposition (CVD). The epilayers have been irradiated with 15 MeV electrons and an isochronal annealing series has been carried out. The measurements have been performed after each annealing step and six electron traps located in the energy band gap range of 0.42-1.6 eV below the conduction band edge (Ec) have been detected.


2013 ◽  
Vol 740-742 ◽  
pp. 625-628
Author(s):  
N. Chuchvaga ◽  
E. Bogdanova ◽  
A. Strelchuk ◽  
Evgenia V. Kalinina ◽  
D.B. Shustov ◽  
...  

A comparative research of the cathodoluminescence and electrical characteristics of the samples 4H-SiC irradiated with high energy Xe ions (167 MeV) in wide range fluencies 4x109 –1x1011 cm-2 at temperatures 250C and 5000C are presented. After irradiation these samples were thermal annealed at 5000C for 30 min. Far-action effect at a depth of more than one order of magnitude of stopping distance was observed under Xe ions irradiation in 4H-SiC. An increase of the ion Xe fluencies increased the concentration of radiation-induced defects that resulted in rise of the compensation effect of conductivity in samples. Irradiation of 4H-SiC by Xe ions at 5000C was accompanied with "dynamic annealing" some low-temperature radiation-induced defects, which led to a partial recovery of the electrical characteristics of devices. The thermal annealing of irradiated samples led to additional partial annealing of radiation defects, which increases the radiation resource of devices based on 4H-SiC.


Sign in / Sign up

Export Citation Format

Share Document