scholarly journals Electrically Pumped Two-Mode Laser Dynamics

2021 ◽  
Vol 66 (3) ◽  
pp. 206
Author(s):  
M. Molla Gessesse

The statistical and squeezing properties of the cavity light produced by a three-level laser are studied. In the laser, N three-level atoms in an open cavity are coupled with a two-mode vacuum reservoir and are pumped to the top level by means of the electron bombardment. Applying the steady-state solutions of the equations of evolution of the expectation values of the atomic operators and the quantum Langevin equations for the cavity mode operators, we have obtained the global and local photon statistics for single-mode cavity light beams and for two-mode cavity light. It is found that the global mean photon number and the global photon-number variance of the light emitted from the top are greater than those for the light emitted from intermediate level. The cavity lights emitted from the top and intermediate levels can be separately in a chaotic state under certain conditions. However, the two-mode cavity light is in a squeezed state under certain conditions. We have established that the maximum quadrature squeezing of the two-mode cavity light to be about 46% below the coherent-state level. The presence of the vacuum reservoir noise has the effect of increasing the photon-number variance and decreasing the quadrature squeezing of the cavity light but has no effect on the mean photon number. We have shown that the local mean photon number and photon number variance of the cavity light approach the global mean photon number and photon number variance of the cavity light as the frequency interval increases.

2021 ◽  
Vol 66 (7) ◽  
pp. 570
Author(s):  
M. Molla Gessesse

We have studied the statistical and squeezing properties of the cavity light generated by a two-level laser. This optical system contains N two-level atoms available in a cavity coupled to a single-mode vacuum reservoir. They are pumped to the top level from the bottom level by means of the electron bombardment. Applying the steady-state solutions of the equations of evolution of the expectation values of the atomic operators and the quantum Langevin equation, we obtained the global and local photon statistics of the single-mode light beam. We have found that, for the two-level laser operating well above the threshold, the uncertainties in the plus and minus quadratures are equal and satisfy the minimum uncertainty relation. In view of this, we have identified the light generated by the laser operating well above threshold to be coherent. On the other hand, the light generated by the laser operating at threshold is found to be chaotic. From the obtained results, we have also observed that a large part of the local mean photon number, the local photon number variance, and the local quadrature variance are confined in a relatively narrow frequency interval.


2021 ◽  
Vol 66 (9) ◽  
pp. 761
Author(s):  
D. Ayehu ◽  
A. Chane

We study the statistical and squeezing properties of the cavity light produced by a degenerate three-level laser with the use of the solution of the pertinent quantum Langevin equation. Moreover, applying the density operator to the cavity radiation superposition, we investigated the quantum properties of the superposed cavity light beams generated by a pair of degenerate three-level lasers. Superposing the cavity radiation increases the mean and the variance of the photon number without affecting the quadrature squeezing. It is observed that the degree of squeezing of the separate cavity radiation, as well as the superposed cavity radiation, increases with the rate at which the atoms are injected into the cavity. We have also shown that the mean photon number of the superposed cavity radiation is the sum of the mean photon numbers of the individual cavity radiation. However, the variance of the photon number of the superposed cavity radiation turns out to be four times that of the component cavity radiation.


2018 ◽  
Vol 63 (11) ◽  
pp. 969 ◽  
Author(s):  
T. Abebe

The analysis of quantum properties of the cavity light produced by a coherently driven nondegenerate three-level laser possessing an open cavity and coupled to a two-mode vacuum reservoir is presented. The normal ordering of noise operators associated with the vacuum reservoir is considered. Applying the solutions of the equations of evolution for the expectation values of the atomic operators and the quantum Langevin equations for the cavity mode operators, the squeezing properties, entanglement amplification, and the normalized second-order correlation function of the cavity radiation are described. The three-level laser generates squeezed light under certain conditions, with maximum intracavity squeezing being 50% below the vacuum-state level. Moreover, it is found that the presence of spontaneous emission increases the quadrature squeezing and entanglement and decreses the mean photon number of the two-mode cavity radiation.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Tamirat Abebe ◽  
Chimdessa Gashu ◽  
Nebiyu Gemechu

We have analyzed the squeezing and statistical properties of the cavity light beam produced by a coherently driven degenerate three-level laser with a degenerate parametric amplifier (DPA) in an open cavity and coupled to a vacuum reservoir via a single-port mirror. We have carried out our analysis by putting the noise operators associated with the vacuum reservoir in normal order. Applying the solutions of the equations of evolution for the expectation values of the atomic operators and the quantum Langevin equation for the cavity mode operator, the mean photon number and the quadrature squeezing of the cavity light are calculated. And a large part of the mean photon number is confined in a relatively small frequency interval. Furthermore, we also obtain the antinormally ordered characteristic function defined in the Heisenberg picture. With the aid of the resulting characteristic function, we determine the Q function which is then used to calculate the photon number distribution.


2016 ◽  
Vol 30 (06) ◽  
pp. 1650024
Author(s):  
Solomon Getahun

We analyze electrically pumped atomic cavity coupled to a two-mode vacuum reservoirs via a single-port mirror whose open cavity contains N nondegenerate three-level cascade atoms. We carry out our analysis by putting the noise operators associated with a vacuum reservoir in normal order. It is found that unlike the mean photon number, the quadrature squeezing and the degree of entanglement do not depend on the number of atoms. This implies that the quadrature squeezing and the degree of entanglement of the cavity light do not depend on the number of photons. We have also shown that the light generated by the three-level laser is in a squeezed and entangled state, with maximum quadrature squeezing and degree of entanglement being 50%. Moreover, the mean photon number of the system in which the laser operating at threshold and above threshold does not depend on the spontaneous decay constant.


2020 ◽  
Vol 65 (5) ◽  
pp. 385
Author(s):  
M. Molla Gessesse

We have investigated the effects of vacuum reservoir noise on the photon statistics and quadrature squeezing of light generated by a three-level laser pumped by coherent light and coupled to a vacuum reservoir via a single-port mirror. We have found that the effect of the vacuum reservoir noise is to increase the photon number variance and to decrease the quadrature squeezing. However, the vacuum reservoir noise has no effect on the mean photon number.


2021 ◽  
Vol 66 (3) ◽  
pp. 185
Author(s):  
T. Abebe ◽  
Ch. Gashu ◽  
E. Mosisa

The detailed analysis of the two-mode quadrature squeezing and statistical properties of light generated by a nondegenerate three-level laser which has a parametric amplifier and coupled with a thermal reservoir is executed. The combination of the master equation and the stochastic differential equation is presented to study the nonclassical features of the light generated by the quantum system. Moreover, with the aid the resulting solutions together with the correlation properties of noise operators, we calculated the quadrature squeezing, entanglement, and mean number of photon pairs of the cavity light. It is found that the external small-amplitude driving radiation induces a strong correlation between the top and bottom states of three-level atoms to produce a high degree of squeezing. Moreover, the presence of a parametric amplifier is found to enhance the degree of squeezing of the cavity light. We have also established that an increase in the mean thermal photon number appears to degrade the squeezing, but enhances the mean number of photon pairs of the cavity light.


Author(s):  
Getahun Alemayehu ◽  
Dagnew Habtamu

In this work the statistical and squeezing properties of light-driven by sub-harmonic generation with two-mode coherent light are studied. With interaction Hamiltonian of both two-mode coherent and sub harmonic generation, we have driven master equation of system under consideration. From the master equation, the solution of the C-number Langevin equation is derived. It helps us to solve quadrature variance, quadrature squeezing, mean, and variance of photon number for light produced by sub-harmonic generation with the two-mode coherent light state. And the result shows that; the squeezing occurs in plus quadrature with the maximum squeezing of 87%. The photon statistics of the system under consideration is subpoissonian in which both mean & variance are increasing as kappa increase.


2015 ◽  
Vol 29 (29) ◽  
pp. 1550175 ◽  
Author(s):  
N. H. Abd El-Wahab ◽  
Ahmed Salah

We study the interaction between a single mode electromagnetic field and a three-level [Formula: see text]-type atom in the presence of a classical homogenous gravitational field when the atom is prepared initially in the momentum eigenstate. The model includes the detuning parameters and the classical homogenous gravitational field. The wave function is calculated by using the Schrödinger equation for a coherent electromagnetic field and an atom is in its excited state. The influence of the detuning parameter and the classical homogenous gravitational field on the temporal behavior of the mean photon number, the normalized second-order correlation function and the normal squeezing is analyzed. The results show that the presence of these parameters has an important effect on these phenomena. The conclusion is reached and some features are given.


2020 ◽  
Vol 34 (33) ◽  
pp. 2050377
Author(s):  
Yan-Bei Cheng ◽  
Sheng-Guo Guan ◽  
Zu-Jian Wang ◽  
Xue-Xiang Xu

Two “amplified” quantum states, that is, amplified coherent state (ACS) and amplified squeezed vacuum (ASV), are considered in this paper by applying operator [Formula: see text] on coherent state (CS) and squeezed vacuum (SV), respectively. Here [Formula: see text] [Formula: see text] denotes a amplification factor and [Formula: see text]) denote the creation (annihilation) operator. Along these two lines, we make a comparative analysis of properties for ACS and ASV. The considered properties include density matrix elements, Wigner function, mean photon number, second-order autocorrelation function, and quadrature squeezing. We derive analytical expressions and make numerical simulations for all the properties. The noteworthy results include: (1) the ACS has antibunching and squeezing characters; (2) the ASV will have the bunching and antibunching effect in small initial squeezing.


Sign in / Sign up

Export Citation Format

Share Document