SOC Estimation of HEV/EV Battery using Series Kalman Filter

2012 ◽  
Vol 132 (9) ◽  
pp. 907-914 ◽  
Author(s):  
Atsushi Baba ◽  
Shuichi Adachi
Keyword(s):  
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1054
Author(s):  
Kuo Yang ◽  
Yugui Tang ◽  
Zhen Zhang

With the development of new energy vehicle technology, battery management systems used to monitor the state of the battery have been widely researched. The accuracy of the battery status assessment to a great extent depends on the accuracy of the battery model parameters. This paper proposes an improved method for parameter identification and state-of-charge (SOC) estimation for lithium-ion batteries. Using a two-order equivalent circuit model, the battery model is divided into two parts based on fast dynamics and slow dynamics. The recursive least squares method is used to identify parameters of the battery, and then the SOC and the open-circuit voltage of the model is estimated with the extended Kalman filter. The two-module voltages are calculated using estimated open circuit voltage and initial parameters, and model parameters are constantly updated during iteration. The proposed method can be used to estimate the parameters and the SOC in real time, which does not need to know the state of SOC and the value of open circuit voltage in advance. The method is tested using data from dynamic stress tests, the root means squared error of the accuracy of the prediction model is about 0.01 V, and the average SOC estimation error is 0.0139. Results indicate that the method has higher accuracy in offline parameter identification and online state estimation than traditional recursive least squares methods.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1733
Author(s):  
Hao Wang ◽  
Yanping Zheng ◽  
Yang Yu

In order to improve the estimation accuracy of the battery state of charge (SOC) based on the equivalent circuit model, a lithium-ion battery SOC estimation method based on adaptive forgetting factor least squares and unscented Kalman filtering is proposed. The Thevenin equivalent circuit model of the battery is established. Through the simulated annealing optimization algorithm, the forgetting factor is adaptively changed in real-time according to the model demand, and the SOC estimation is realized by combining the least-squares online identification of the adaptive forgetting factor and the unscented Kalman filter. The results show that the terminal voltage error identified by the adaptive forgetting factor least-squares online identification is extremely small; that is, the model parameter identification accuracy is high, and the joint algorithm with the unscented Kalman filter can also achieve a high-precision estimation of SOC.


Author(s):  
Xiongbin Peng ◽  
Yuwu Li ◽  
Wei Yang ◽  
Akhil Garg

Abstract In the battery thermal management system (BMS), the state of charge (SOC) is a very influential factor, which can prevent overcharge and over-discharge of the lithium-ion battery (LIB). This paper proposed a battery modeling and online battery parameter identification method based on the Thevenin equivalent circuit model (ECM) and recursive least squares (RLS) algorithm. The proposed model proved to have high accuracy. The error between the ECM terminal voltage value and the actual value basically fluctuates between ±0.1V. The extended Kalman filter (EKF) algorithm and the unscented Kalman filter (UKF) algorithm were applied to estimate the SOC of the battery based on the proposed model. The SOC experimental results obtained under dynamic stress test (DST), federal urban driving schedule (FUDS), and US06 cycle conditions were analyzed. The maximum deviation of the SOC based on EKF was 1.4112%~2.5988%, and the maximum deviation of the SOC based on UKF was 0.3172%~0.3388%. The SOC estimation method based on UKF and RLS provides a smaller deviation and better adaptability in different working conditions, which makes it more implementable in a real-world automobile application.


2018 ◽  
Vol 8 (11) ◽  
pp. 2028 ◽  
Author(s):  
Xin Lai ◽  
Dongdong Qiao ◽  
Yuejiu Zheng ◽  
Long Zhou

The popular and widely reported lithium-ion battery model is the equivalent circuit model (ECM). The suitable ECM structure and matched model parameters are equally important for the state-of-charge (SOC) estimation algorithm. This paper focuses on high-accuracy models and the estimation algorithm with high robustness and accuracy in practical application. Firstly, five ECMs and five parameter identification approaches are compared under the New European Driving Cycle (NEDC) working condition in the whole SOC area, and the most appropriate model structure and its parameters are determined to improve model accuracy. Based on this, a multi-model and multi-algorithm (MM-MA) method, considering the SOC distribution area, is proposed. The experimental results show that this method can effectively improve the model accuracy. Secondly, a fuzzy fusion SOC estimation algorithm, based on the extended Kalman filter (EKF) and ampere-hour counting (AH) method, is proposed. The fuzzy fusion algorithm takes advantage of the advantages of EKF, and AH avoids the weaknesses. Six case studies show that the SOC estimation result can hold the satisfactory accuracy even when large sensor and model errors exist.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 321 ◽  
Author(s):  
Xin Lai ◽  
Wei Yi ◽  
Yuejiu Zheng ◽  
Long Zhou

In this paper, a novel model parameter identification method and a state-of-charge (SOC) estimator for lithium-ion batteries (LIBs) are proposed to improve the global accuracy of SOC estimation in the all SOC range (0–100%). Firstly, a subregion optimization method based on particle swarm optimization is developed to find the optimal model parameters of LIBs in each subregion, and the optimal number of subregions is investigated from the perspective of accuracy and computation time. Then, to solve the problem of a low accuracy of SOC estimation caused by large model error in the low SOC range, an improved extended Kalman filter (IEKF) algorithm with variable noise covariance is proposed. Finally, the effectiveness of the proposed methods are verified by experiments on two kinds of batteries under three working cycles, and case studies show that the proposed IEKF has better accuracy and robustness than the traditional extended Kalman filter (EKF) in the all SOC range.


2021 ◽  
Author(s):  
Maral Partovibakhsh

For autonomous mobile robots moving in unknown environment, accurate estimation of available power along with the robot power demand for each mission is paramount to successful completion of that mission. Regarding the power consumption, the control unit deals with two tasks simultaneously: 1) it has to monitor the power supply (batteries) state of charge (SoC) constantly. This leads to estimation of robot current available power. Besides, batteries are sensitive to deep discharge or overcharge. The battery SoC is an essential factor in power management of a mobile robot. Accurate estimation of the battery SoC can improve power management, optimize the performance, extend the lifetime, and prevent permanent damage to the batteries. 2) The dynamic characteristics of the terrain the robot traverse requires rapid online modifications in its behaviour. The power required for driving a wheel is an increasing function of its slip ratio. For a wheeled robot moving for driving a wheel is an increasing function of its slip ratio. For a wheeled robot moving on different terrains, slip of the wheels should be checked and compensated for to keep the robot moving with less power consumption. To reduce the power consumption, the target robot moving with less power consumption. To reduce the power consumption, the target of the control system is to keep the slip ratio of the driving wheels around the desired value of the control system is to keep the slip ratio of the driving wheels around the desired value. To fulfill the above mentioned tasks, in this thesis, to increase model validity of lithium-ion battery in various charge/discharge scenarios during the mobile robot operation, the battery capacity fade and internal resistance change are modeled by adding them as state variables to a state space model. Using the output measured data, adaptive unscented Kalman Filter (AUKF) is employed for online model parameters identification of the equivalent circuit model at each sampling time. Subsequently, based on the updated model parameters, SoC estimation is conducted using AUKF. The effectiveness of the proposed method is verified through experiments under different power duties in the lab environment through experiments under different power duties in the lab environment. Better results are obtained both in battery model parameters estimation and the battery SoC estimation in comparison with other Kalman filter extensions. Furthermore, for effective control of the slip ratio, a model-based approach to estimating the longitudinal velocity of the mobile robot is presented. The AUKF is developed to estimate the vehicle longitudinal velocity and the wheel angular velocity using measurements from wheel encoders. Based on the estimated slip ratio, a sliding mode controller is designed for slip control of the uncertain nonlinear dynamical system in the presence of model uncertainties, parameter variations, and disturbances. Experiments are carried out in real time on a four-wheel mobile robot to verify the effectiveness of the estimation algorithm and the controller. It is shown that the controller is able to control the slip ratio of the mobile robot on different terrains while adaptive concept of AUKF leads to better results than the unscented Kalman filter in estimating the vehicle velocity which is difficult to measure in actual practice.


Sign in / Sign up

Export Citation Format

Share Document