Study on Design Standard of Distribution Transformers considering Economic Efficiency and CO2 Emissions

2010 ◽  
Vol 130 (9) ◽  
pp. 826-832 ◽  
Author(s):  
Tomoyuki Yamada ◽  
Masaaki Takagi ◽  
Hiromi Yamamoto ◽  
Kenji Yamaji
2019 ◽  
Author(s):  
Ranran Wang ◽  
Valentina A. Assenova ◽  
Edgar Hertwich

Prior research on the empirical relationship between anthropogenic carbon dioxide (CO2) emissions and economic growth, as measured by increases in gross domestic product (GDP), indicate that a 1% growth in GDP can lead to anything between an increase in emissions by 2.5% to a decline by 0.3%. Studies have paid little attention to independent mechanisms that reduce emissions. Statistical properties of the data undermine the estimation techniques used in many studies. To address these shortcomings, we used novel methods and panel data integrating emissions, economic, and energy-system characteristics across 70 economies over 1970-2013 to derive a universal GDP-emissions relationship and identify key emissions-reduction mechanisms. We found that, robust to a variety of estimation procedures, every 1% increase in GDP was associated with a 1% increase in CO2 emissions when controlling for other mechanisms. Emissions reductions were mainly driven by four mechanisms: (i) energy system decarbonization, (ii) increased economic efficiency, (iii) electrification, and (iv) deindustrialization. A 1% increase in these factors was associated with 0.2-1.8% reductions in CO2 emissions per year; together, these factors contributed to 18 petagrams of emissions reduction globally over 1970-2013. Decarbonization contributed most to emissions reductions in high-income economies, while economic efficiency and electrification contributed most to reductions in low-income economies.


2020 ◽  
Vol 12 (19) ◽  
pp. 8102
Author(s):  
Kyung Ho Kim ◽  
Jin Yong Jeon

In this study, a gypsum board wall was developed using resilient channels to improve sound insulation performance, constructability, and economic efficiency; the effect of the application of the developed wall on skyscrapers and long-term housing, one of the main forms of modern buildings, was also comprehensively evaluated. Resilient channels were inserted and fixed to ensure the constructability was suitable for high-rise buildings. In addition, the sound insulation performance, durability of the wall, CO2 emissions, and life-cycle cost (LCC), which are key elements for economic efficiency, constructability, and sustainability, were analyzed. The developed lightweight gypsum board drywall with resilient channels was compared with a concrete wall as well as a double stud gypsum board wall, which has been most widely used among existing drywalls. The sound insulation performance and durability were evaluated in a laboratory, and the other items were evaluated after constructing the walls in a hotel building with an area of 2956 m2. The evaluation results show that the developed wall exhibited a 3 dB higher sound insulation performance than the concrete wall, even though it was thinner by 50 mm, and the wall secured the grade of “severe duty” (SD) based on the BS 5234-2 standard in durability evaluation, indicating that it can sufficiently replace concrete walls. Moreover, when the developed wall was installed in an actual building and compared with a concrete wall, a 14.7% reduction in construction cost, 59% reduction in CO2 emissions, and 30.4% reduction in the LCC of the drywall, considering even the remodeling and dismantling stages of the building, were observed. Therefore, it was proven that the newly developed resilient channel drywall with improved constructability has significant value in terms of sound insulation performance, economic efficiency, safety, and eco-friendliness.


Author(s):  
Hideyuki Chisaka ◽  
Tsuguhiko Nakagawa

In order to reduce the quantity of CO2 emissions economically, it is important to construct a Smart Community which is expected to be one of the solutions. In a Smart Community, energy supply and demand system is developing to manage with ICT (Information and Communication Technology) to utilize energy efficiently and increase the amount of renewable energy. In one of the systems, “Photovoltaic power generator (hereinafter referred to as PV) & Electric Vehicle (hereinafter referred to as EV) Smart System” has been developed. In the “PV & EV Smart System”, PV power is charged directly to the EV battery, and then the charged PV power is consumed by running and air-conditioning energy of a car and supplied to a home. This system is able to reduce the quantity of CO2 emissions with high economic efficiency. In order to expand the system, it is necessary to spread EV. So, it should solve the issues of short driving distance, the high cost of storage battery and the risk of dead battery. Therefore, the authors have proposed an advanced EV such as AI-EV (Air-conditioner Integrated Electric Vehicle). AI-EV has a novel hybrid system which drives the air-conditioning system and generates electric power in the case of a low air-conditioning load through the use of a small-engine. PV power can not only reduce car fuels but also replace with gas and liquid fuels which are used at a home, causing the huge effect of reducing CO2 emissions as the whole system. In this paper, a novel energy system which is integrated with solar power, advanced electric vehicle and CO2 heat pump water heater as home heat pumps has been proposed. A mathematical simulation model which evaluates for the PV power generation, AI-EV energy consumption and home heat pumps has been developed. CO2 emissions and economic efficiency are calculated and compared with those of the conventional system. As the result, the novel energy system is able to reduce more than 30% of the quantity of CO2 emissions in comparison with the conventional system as the whole system, and the system can reduce about 60% of the quantity of CO2 emissions in comparison with the conventional system as a home system. The economic efficiency is evaluated by more than 6.0% of IRR (Internal Rate of Return) without some subsidies when the legal service life of the depreciation equipment is assumed 14 years. Therefore, the novel energy system can be widely spread in the future.


Author(s):  
Teng-Fei Wang ◽  
Kevin Cullinane ◽  
Dong-Wook Song

2020 ◽  
pp. 119-131

Research highlights the importance of potato crop, which occupies a prominent food and economic status in food security besides rice, wheat and corn at the local and global level. Despite the expansion of the cultivation of potato crop in Iraq in general and Ameriyah district in particular However, potato productivity remains substandard, this may be due to a lack of knowledge of the most efficient varieties and not to use productive resources at the levels at which technical, specialized and economic efficiency is achieved. Therefore, the aim of the research is to determine the technical, specialized and economic efficiency according to the cultivated seed category. The data envelope analysis (DEA) method was used to estimate technical, specialized and economic efficiency, assuming constant and variable capacity returns. As a result of the study, the Safrana variety achieved the highest average technical efficiency according to the stability of the yield and capacity efficiency in addition to achieving the highest average specialized and economic efficiency, The Lapadia variety achieved the highest average technical efficiency, assuming that capacity returns have changed. Therefore, we recommend the adoption of items that achieve higher efficiency and the need to redistribute the elements of production better and Achieving the optimum levels at which technical, specialized and economic efficiency is achieved and saving what has been wasted.


Author(s):  
Kornilova E. B. ◽  
◽  
Holovnya-Voloskova M. E. ◽  
Kornilov M. N. ◽  
Zavyalov A. A. ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document