scholarly journals Evaluation of Patient Radiation Doses in Skull Radiography

2019 ◽  
Vol 5 (2) ◽  
pp. 51-56
Author(s):  
Chanchal Kaushik ◽  
Inderjeet Singh Sandhu ◽  
AK Srivastava

Purpose: Exposures to medical ionizing radiations elevate the risk of stochastic effects such as cancer in exposed individuals. It is of utmost importance to monitor the radiation doses delivered to patients and their optimization to reduce the associated radiation risks without limiting the diagnostic information. Methods: Entrance surface air kerma (ESAK) in a total of 64 adult patients in diagnostic digital Xray examinations were calculated and effective doses were estimated as per International Atomic Energy Agency (IAEA). Results: Median ESAK (mGy) and associated effective doses obtained were skull PA (0.45mGy, 0.005mSv) and skull Lat (0.25mGy, 0.003mSv). Results were compared with UK diagnostic reference levels and studies in India.Conclusion: The comparison revealed that the calculated ESAK and effective dose values wereless than the published literature. ESAK values reported in this study could further contribute toestablishing LDRLs.

2021 ◽  
Vol 193 (1) ◽  
pp. 16-23
Author(s):  
Chanchal Kaushik ◽  
Inderjeet Singh Sandhu ◽  
A K Srivastava ◽  
Mansi Chitkara

Abstract Purpose: Contribution of radiation doses from medical X-ray examination to collective dose is significant. Unusually, high doses may increase the risk of stochastic effects of radiations. Therefore, radiation dose assessment was performed in 241 digital X-ray examinations in the study and was compared with published dose reference levels (DRLs). Methods: Entrance surface air kerma (ESAK) was calculated in chest PA, cervical AP/Lat, abdomen AP, lumbar AP/Lat and pelvis AP digital radiographic examinations (119 male and 122 female) following the International Atomic Energy Agency recommended protocol. Initially, 270 digital examinations were selected, reject analysis was performed and final 241 examinations were enrolled in the study for dose calculations. The exposure parameters and X-ray tube output were used for dose calculations. Effective doses were estimated with the help of conversion coefficients from ICRP 103. Results: Median ESAK (mGy) and associated effective doses obtained were cervical spine AP (1.30 mGy, 0.045 mSv), cervical spine Lat (0.25 mGy, 0.005 mSv), chest PA (0.11 mGy, 0.014 mSv), abdomen AP (0.90 mGy, 0.118 mSv), lumbar spine AP (1.52 mGy, 0.177 mSv), lumbar spine Lat (7.76 mGy, 0.209 mSv) and pelvis AP (0.82 mGy, 0.081 mSv). Results were compared with the studies of UK, Oman, India and Canada. Conclusion: The calculated ESAK and effective dose values were less than or close to previously published literature except for cervical spine AP and lumbar spine Lat. The results reinforce the need for radiation protection optimization, improving examination techniques and appropriate use of automatic exposure control in digital radiography. ESAK values reported in this study could further contribute to establishing local DRLs, regional DRLs and national DRLs.


2020 ◽  
Vol 190 (4) ◽  
pp. 419-426
Author(s):  
Nada A Ahmed ◽  
E H Basheir ◽  
A B Farah ◽  
T S Mohammedzein ◽  
I I Suliman

Abstract This study aimed to calculate patient radiation doses for adults during the seven most commonly performed conventional X-ray procedures, and to propose national diagnostic reference levels (DRLs). A representative sample of patients from 29 hospitals was included. The entrance surface air kerma (ESAK) was calculated by measuring X-ray tube output and the corresponding technical and exposure factors for each patient. Third-quartile values of the mean ESAK distributions were proposed as DRL values. The DRLs in mGy were as follows: 0.6 for chest postero–anterior (PA), 3.5 for skull AP, 1.7 for skull lateral (LAT), 2.7 for abdominal, 2.6 for pelvic AP, 3.7 for lumbar spine AP and 8 for lumbar spine LAT. Compared with literature, the maximum percentages increase were in chest PA (329%) and skull AP (187%). Since the suggested DRL for chest PA was higher than literature values, dose optimization and a review of its value is recommended.


2019 ◽  
Vol 37 (1) ◽  
pp. 51
Author(s):  
Atchara Promduang ◽  
Napapong Pongnapang ◽  
Napat Ritlumlert ◽  
Sutthirak Tangruangkiat ◽  
Monchai Phonlakrai

Objective: The main purpose of this study was to investigate the typical dose for standard-sized patients in chest (posteroanterior; PA) and abdomen (anteroposterior; AP) digital radiography.Material and Methods: The air kerma was measured by the ionization chamber (Radical Corporation, model 10X6-6) in X-ray equipment manufactured by General Electric Healthcare Definium 8000 System for different kilovoltage peak (kVp) settings in each X-ray examination. The entrance surface air kerma (ESAK) was determined in 422 mediumsized patients in different projections: chest (PA) and abdomen (AP), according to the recommended protocol of the International Atomic Energy Agency Technical Report Series Number 457 (Technical Reports Series No. 457 “Dosimetry in Diagnostic Radiology: An International Code of Practice).Results: The mean entrance surface air kerma values for chest (PA) radiography in female and male patients were 0.08 milligray (mGy) and 0.09 mGy, respectively and for abdomen (AP) radiography for both genders were 0.98 mGy and 1.06 mGy, respectively.Conclusion: The mean entrance surface air kerma values of this study were less than the diagnostic reference levels from the IAEA 1996, Korea 2007, United Kingdom 2010 and Japan 2015, in all projections. Patient doses (ESAK) in chest (PA) and abdomen (AP) digital radiography at Chulabhorn Hospital were less than the other guidelines, because of the use of a high kVp technique for the chest and the automatic exposure control for the abdomen. Furthermore, Thai people are smaller than Westerners. We studied in digital radiography only that literally provides lowest radiation dose compares with screen film and computed radiography.


2020 ◽  
Vol 189 (3) ◽  
pp. 354-361
Author(s):  
Huda AlNaemi ◽  
Antar Aly ◽  
Ahmed J Omar ◽  
Amal AlObadli ◽  
Olivera Ciraj-Bjelac ◽  
...  

Abstract In the absence of information on radiation doses in mammography in the Gulf countries, this study was designed to assess patient dose in terms of entrance surface air kerma and average glandular dose (AGD) in three mammography units in Qatar that covers 21% of all mammography systems in the country. The study of 150 patients involving 600 projections indicated that the average value of AGD in patients was 2.2 mGy for cranio-caudal and 2.5 mGy for mediolateral-oblique views, respectively. Dose assessment was also performed for polymethyl methacrylate phantoms of thicknesses, ranging from 20 to 80 mm. Comparing the patient dose values with several other publications in literature for full-field digital mammography, our values are typically higher, which can be likely attributed to the larger compressed breast thickness.


2020 ◽  
Vol 6 (1) ◽  
pp. 56-63
Author(s):  
Pooja Shah

Keywords: Effective dose, Dose Length Product, Computed Tomography Dose Indexvolume, Dose Reference Level AbstractAim: The aim of this study was to estimate the effective doses from CT scans using DoseLength Product (DLP) in a Nepalese hospital.Materials and methods: This prospective study was conducted in 150 patients above 18years of age who were referred for CT scan of head, chest and abdomen. The CT scan wasperformed on a 128 slice multi detector scanner. All the subjects who met the inclusioncriteria were included in the study. Following the non-contrast imaging phases of the head,chest and abdomen CTDIvol, DLP, kVp and pitch were recorded for each patient from theconsole display of the scanner. The effective dose was calculated for each examination usingDLP which were graphically analyzed and correlated with the age of the patient.Results: The study showed the mean CTDIvol for head, chest and abdomen to be 53.95±4.83mGy, 5.28±1.17 mGy and 11.15±2.71 mGy respectively along with mean DLP to be923.52±71.11 mGycm, 229.32±48.70 mGycm and 517.02±148.32 mGycm respectively. Usingthese values, the mean effective doses were calculated and found to be 1.93±0.14 mSv,3.20±0.68 mSv and 7.75±2.19 mSv respectively.Conclusion: The calculated effective dose values were lower than in other studies for CTexaminations of chest and abdomen while higher or similar for CT examination of head. Theresults of this survey could motivate other researchers to investigate the radiation doses inother hospitals and help establish national diagnostic reference levels.  


2015 ◽  
Vol 16 (2) ◽  
pp. 71
Author(s):  
Eri Hiswara ◽  
Dewi Kartikasari

ABSTRAKDOSIS PASIEN PADA PEMERIKSAAN RUTIN SINAR-X RADIOLOGI DIAGNOSTIK. Teknik diagnosis untuk melihat kondisi fisik seorang pasien dengan menggunakan pesawat sinar-X merupakan teknik yang paling banyak digunakan di dunia.  Berdasarkan Badan PBB untuk Efek Radiasi Atom (UNSCEAR), pajanan radiasi sinar-X pada pemeriksaan rutin radiologi diagnostik memberikan kontribusi terbesar bagi penerimaan dosis radiasi oleh penduduk dunia. Untuk kepentingan keselamatan pasien, Badan Tenaga Atom Internasional (IAEA) telah merekomendasikan penggunaan tingkat acuan diagnostik (DRL) agar dosis radiasi yang diterima pasien tersebut optimum sambil tetap mempertahankan kualitas citra film yang dihasilkan dari aplikasi ini. Dalam kaitan ini telah dilakukan studi tingkat dosis radiasi yang diterima oleh pasien dari aplikasi radiasi di bidang radiologi diagnostik. Hasil studi dibandingkan dengan tingkat acuan diagnostik yang berlaku di Indonesia. Studi dilakukan dengan melakukan pengukuran dosis permukaan masuk pada 130 orang pasien yang menjalani pemeriksaan thorax (AP/PA), thorax lat, abdomen, kepala AP/PA, kepala Lat, lumbo sacral AP, lumbo sacral Lat, ekstremitas, pelvis AP, cervical AP, cervical Lat, cervical oblique, clavicula dan thoracal lumbal di tiga rumah sakit di kota Makassar, Sukabumi, dan Pontianak. Hasil studi menunjukkan bahwa data dosis radiasi yang diterima pasien pada pemeriksaan thorax AP/PA, thorax lat, abdomen, kepala AP/PA, kepala lat, lumbosacral AP, lumbosacral lat dan pelvis AP menunjukkan nilai yang tidak melebihi nilai tingkat acuan diagnostik yang berlaku di Indonesia, dan dosis radiasi yang diterima pasien anak lebih rendah daripada dosis pasien dewasa. Perbandingan nilai dosis pasien yang diperoleh pada studi ini dan di Malaysia dengan hasil yang diperoleh dari beberapa negara maju juga memperlihatkan bahwa dosis pasien di negara berkembang relatif tidak berbeda dengan dosis pasien di negara-negara maju tersebut. ABSTRACTDOSES TO PATIENTS IN ROUTINE X-RAY EXAMINATIONS OF DIAGNOSTIC RADIOLOGY. Diagnostic technique to study physical condition of a patient using X-rays is the most common technique used in the world. According to the United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR), radiation exposures in routine X-rays examination of diagnostic radiology contribute to the biggest portion of radiation doses received by world’s population. For the purposes of patient safety, diagnostic reference levels have been recommended by the International Atomic Energy Agency (IAEA) to be used in order to optimize the dose received by patient while maintaining quality of film image produced by these procedures. In this regard study on the determination of the level of radiation doses received by patient, has been carried out. Results of study are compared to the diagnostic reference levels for medical exposures applied in Indonesia. The study was performed by measuring entrance surface doses in 130 patients who underwent the X-ray examinations of thorax AP/PA, thorax lat, abdomen, skull AP/PA, skull Lat, lumbo sacral AP, lumbo sacral Lat, extremities, pelvis AP, cervical AP, cervical Lat, cervical oblique, clavicula and thoracal lumbal in three hospitals in the cities of Makassar, Sukabumi, dan Pontianak. The results show all data of patient doses from examinations of thorax AP/PA, thorax lat, abdomen, skull AP/PA, skull Lat, lumbo sacral AP, lumbo sacral Lat, extremities and pelvis APwere less than the levels applied in Indonesia and doses received by children were  less than those by adult patients. Comparison of data obtained in this study and in Malaysia as developing countries with those from advanced countries also showed that they were relatively no difference between the two groups.


2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Wilson Otto Gomes Batista ◽  
Alexandre Gomes De Carvalho

Contrast-detail (C-D) curves are useful in evaluating the radiographic image quality in a global way. The objective of the present study was to obtain the C-D curves and the inverse image quality figure. Both of these parameters were used as an evaluation tool for abdominal and chest imaging protocols. The C-D curves were obtained with the phantom CDRAD 2.0 in computerized radiography and the direct radiography systems (including portable devices). The protocols were 90 and 102 kV in the range of 2 to 20 mAs for the chest and 80 kV in the range of 10 to 80 mAs for the abdomen. The incident air kerma values were evaluated with a solid state sensor. The analysis of these C-D curves help to identify which technique would allow a lower value of the entrance surface air kerma, Ke, while maintaining the image quality from the point of view of C-D detectability. The results showed that the inverse image quality figure, IQFinv, varied little throughout the range of mAs, while the value of Ke varied linearly directly with the mAs values. Also, the complete analysis of the curves indicated that there was an increase in the definition of the details with increasing mAs. It can be concluded that, in the transition phase for the use of the new receptors, it is necessary to evaluate and adjust the practised protocols to ensure, at a minimum, the same levels of the image quality, taking into account the aspects of the radiation protection of the patient.


Hand ◽  
2021 ◽  
pp. 155894472199425
Author(s):  
Kiran R. Madhvani ◽  
Matthew J. R. Clark ◽  
Alex A. J. Kocheta

Background: Diagnostic reference levels are radiation dose levels in medical radiodiagnostic practices for typical examinations for groups of standard-sized individuals for broadly defined types of equipment. This study aimed to contribute to national diagnostic reference levels for common hand and wrist procedures using mini C-arm fluoroscopy. Small joint and digital fracture procedure diagnostic reference levels have not been reported in significant numbers previously with procedure-level stratification. Methods: Data were collected from fluoroscopy logbooks and were cross-referenced against the audit log kept on fluoroscopy machines. A total of 603 procedures were included. Results: The median radiation dose for wrist fracture open fixation was 2.73 cGycm2, Kirschner wiring (K-wiring) procedures was 2.36 cGycm2, small joint arthrodesis was 1.20 cGycm2, small joint injections was 0.58 cGycm2, and phalangeal fracture fixation was 1.05 cGycm2. Conclusions: Wrist fracture fixation used higher radiation doses than phalangeal fracture fixation, arthrodeses, and injections. Injections used significantly less radiation than the other procedures. There are significant differences in total radiation doses when comparing these procedures in hand and wrist surgery. National and international recommendations are that institutional audit data should be collected regularly and should be stratified by procedure type. This study helps to define standards for this activity by adding to the data available for wrist fracture diagnostic reference levels and defining standards for digital and injection procedures.


2017 ◽  
Vol 59 (6) ◽  
pp. 649-656 ◽  
Author(s):  
Teresa Monserrat ◽  
Elena Prieto ◽  
Benigno Barbés ◽  
Luis Pina ◽  
Arlette Elizalde ◽  
...  

Background In 2014, Siemens developed a new software-based scatter correction (Progressive Reconstruction Intelligently Minimizing Exposure [PRIME]), enabling grid-less digital mammography. Purpose To compare doses and image quality between PRIME (grid-less) and standard (with anti-scatter grid) modes. Material and Methods Contrast-to-noise ratio (CNR) was measured for various polymethylmethacrylate (PMMA) thicknesses and dose values provided by the mammograph were recorded. CDMAM phantom images were acquired for various PMMA thicknesses and inverse Image Quality Figure (IQFinv) was calculated. Values of incident entrance surface air kerma (ESAK) and average glandular dose (AGD) were obtained from the DICOM header for a total of 1088 pairs of clinical cases. Two experienced radiologists compared subjectively the image quality of a total of 149 pairs of clinical cases. Results CNR values were higher and doses were lower in PRIME mode for all thicknesses. IQFinv values in PRIME mode were lower for all thicknesses except for 40 mm of PMMA equivalent, in which IQFinv was slightly greater in PRIME mode. A mean reduction of 10% in ESAK and 12% in AGD in PRIME mode with respect to standard mode was obtained. The clinical image quality in PRIME and standard acquisitions resulted to be similar in most of the cases (84% for the first radiologist and 67% for the second one). Conclusion The use of PRIME software reduces, in average, the dose of radiation to the breast without affecting image quality. This reduction is greater for thinner and denser breasts.


Sign in / Sign up

Export Citation Format

Share Document