scholarly journals Utilization of fumarate by sulfur-reducing bacteria Desulfuromonas sp.

2016 ◽  
Vol 24 (2) ◽  
Author(s):  
O. Сhayka ◽  
T. Peretjatko ◽  
S. Gudz ◽  
A. Halushka

The main goal of the work was to study the utilization of fumarate by sulfur-reducing bacteria Desulfuromonas sp. under different growth conditions and accumulation of hydrogen sulfide by bacteria in the media with sulfur and different electron donors. Sulfur-reducing bacteria Desulfuromonas sp., isolated from soil in Yazivske sulfur deposit, were used in the reasearch. Bacteria were grown in the medium Postgate C without sulfates. The content of hydrogen sulfide was determined by formation of methylene blue. The content of organic acids (fumarate, succinate, lactate, acetate) was determined by high performance liquid chromatography (HPLC). The biomass of cells was determined by the photoelectrocolorymetry method using KFK-3. The highest level of accumulation of hydrogen sulfide by bacteria Desulfuromonas sp. was found in media with sodium lactate and sodium pyruvate. The maximal concentration of hydrogen sulfide was 1.9 mM. Maximal accumulation of biomass was observed in the media with malate, lactate and fumarate with the presence of elemental sulfur. Sulfur-reducing bacteria Desulfuromonas sp. are able to utilize fumarate as an electron donor and acceptor in the absence of elemental sulfur in the medium. After the incubation of Desulfuromonas sp. in the medium with fumarate, chromatographic analysis of culture liquid showed that fumarate is converted to succinate and small quantities of acetate The presence of acetate is, probably, due to the particularaties of the functioning of citric acid cycle in bacteria of the genus Desulfuromonas. Consequently, the results indicate that the fumarate serves as a donor and acceptor of electrons.The simultaneous introduction of two electron donors – fumarate and elemental sulfur – was accompanied by inhibition of sulfur reduction. After an additional source of carbon (sodium lactate) and electron acceptor (elemental sulfur) was added to the medium with fumarate a fivefold increase of sulfidogenic activity was observed. Thus, regulation of respiration in bacteria Desulfuromonas sp. is directed to the primary utilization of the most energetically favorable electron acceptors. 

2020 ◽  
Vol 11 (2) ◽  
pp. 170-174
Author(s):  
O. M. Сhaіka ◽  
T. B. Peretyatko

Sulfur-reducing bacteria are promising agents for the development of new methods of wastewater treatment with the removal of ions of heavy metals and organic compounds. Study of the effect of various environmental factors on the growth and sulfidogenic activity of sulfur-reducing bacteria allows one to investigate the adaptability of these microorganisms to stress factors. The paper deals with the effect of рН, different concentrations of elemental sulfur, hydrogen sulfide and presence of various electron acceptors on the growth and sulfidogenic activity of bacteria Desulfuromonas sp. YSDS-3. The calculation of C/S ratio for sulfur-reducing bacteria Desulfuromonas sp. YSDS-3 was made, with the comparison with similar parameters of sulfate-reducing bacteria. In the medium with elemental sulfur, concentration of hydrogen sulfide increased with the concentration of elemental sulfur. Bacteria Desulfuromonas sp. YSDS-3 accumulated their biomass in the most effective way at the concentration of elemental sulfur of 10–100 mM. In the medium with polysulfide form of sulfur at the neutral pH, bacteria produced hydrogen sulfide and accumulated biomass the best. Hydrogen sulfide at the concentration of 3 mM did not inhibit the bacterial growth, but further increase in the hydrogen sulfide concentration inhibited the growth of bacteria. The bacteria did not grow at the hydrogen sulfide concentration of 25 mM and above. As the concentration of elemental sulfur and cell density increases, sulfidogenic activity of the bacteria grows. Presence of two electron acceptors (S and K2Cr2O7, S and MnO2, S and Fe (III)) did not affect the accumulation of biomass of the bacteria Desulfuromonas sp. YSDS-3. However, under such conditions the bacteria accumulated 1.5–2.5 times less hydrogen sulfide than in the test medium. After 12–24 h of cultivation, different concentrations of elemental sulfur had a significant effect on the sulfidogenic activity. However, during 3–16 days of cultivation, the percentage of effect of elemental sulfur concentration decreased to 31%, while the percentage of effect of cell density increased threefold. Presence in the medium of the electron acceptors (Cr (VI), MnO2, Fe (III)) alternative to elemental sulfur led to a significant decrease in the content of hydrogen sulfide produced by sulfur-reducing bacteria.


2006 ◽  
Vol 56 (12) ◽  
pp. 2909-2913 ◽  
Author(s):  
Olfa Haouari ◽  
Marie-Laure Fardeau ◽  
Laurence Casalot ◽  
Jean-Luc Tholozan ◽  
Moktar Hamdi ◽  
...  

Several strains of sulfate-reducing bacteria were isolated from marine sediments recovered near Tunis, Korbous and Bizerte, Tunisia. They all showed characteristics consistent with members of the genus Desulfovibrio. One of these strains, designated MB3T, was characterized further. Cells of strain MB3T were slender, curved, vibrio-shaped, motile, Gram-negative, non-spore-forming rods. They were positive for desulfoviridin as bisulfite reductase. Strain MB3T grew at temperatures of 15–45 °C (optimum 40 °C) and at pH 6.0–8.1 (optimum pH 7.0). NaCl was required for growth (optimum 20 g NaCl l−1). Strain MB3T utilized H2 in the presence of acetate with sulfate as electron acceptor. It also utilized lactate, ethanol, pyruvate, malate, fumarate, succinate, butanol and propanol as electron donors. Lactate was oxidized incompletely to acetate. Strain MB3T fermented pyruvate and fumarate (poorly). Electron acceptors utilized included sulfate, sulfite, thiosulfate, elemental sulfur and fumarate, but not nitrate or nitrite. The G+C content of the genomic DNA was 51 mol%. On the basis of genotypic, phenotypic and phylogenetic characteristics, strain MB3T (=DSM 18034T=NCIMB 14199T) is proposed as the type strain of a novel species, Desulfovibrio bizertensis sp. nov.


2021 ◽  
Vol 15 (2) ◽  
pp. 35-46
Author(s):  
O. M. Сhayka ◽  
◽  
T. B. Peretyatko ◽  
A. A. Halushka ◽  

Introduction. Thermophilic sulfate-reducing bacteria attract attention of scientists as the potential agents of purification of wastewater polluted by sulfur and its compounds, heavy metal ions and organic compounds. These bacteria oxidize different organic substrates using metals with variable valency as electron acceptors and transform them into non-toxic or less toxic forms for living organisms. However, wastewater contains high concentrations of different toxic xenobiotics, particularly, metal ions that have negative influence on living organisms. For this reason, it is important to use resistant strains of microorganisms for the purification of wastewater. The aim of this work was to identify the thermophilic sulfur-reducing bacteria, isolated from “Nadiia” pit spoil heap of Chervonohrad mining region, and to study their properties. Materials and Methods. Thermophilic sulfur-reducing bacteria were isolated from the samples of rock of “Nadiia” pit heap at 50 cm depth. Bacteria were cultivated in TF medium under the anaerobic conditions in anaerostates. Cell biomass was measured turbidimetrically using the photoelectric colorimeter KFK-3 (λ = 340 nm, 3 mm cuvette). Hydrogen sulfide content was measured photoelectrocolorymetrically by the production of methylene blue. Organic acids content was measured by high performance liquid chromatography. Cr(VI), Fe(III), Мn(IV) and NO3– content was measured turbidimetrically. Results. Thermophilic sulfur-reducing bacteria were isolated from the rock of “Nadiia” pit heap of Chervonohrad mining region. They were identified as Moorela thermoacetica based on the morpho-physiological and biochemical properties and on the results of phylogenetic analysis. M. thermoacetica Nadia-3 grow in the synthetic TF medium, have the shape of elongated rods, are gram-positive, endospore-forming. They form light brown colonies. Optimal growth was observed at 50–55 °C, pH 6.5–7. The bacteria utilize glucose, starch, fructose, maltose, lactose, sodium lactate, arabinose, cellulose, maltose, glycerol, fumarate, and ethanol as carbon sources. The highest sulfidogenic activity of M. thermoacetica Nadia-3 was found in media with glycerol, lactose, and glucose. M. thermoacetica Nadia-3 reduce SO42-, S2O32-, Fe(III), NO3–, Cr(VI) compounds besides elemental sulfur. They accumulate biomass at K2Cr2O7 concentrations of 0.1–1 mM. Sulfur reduction is not the main way of energy accumulation. Conclusions. Thermophilic chromium-resistant sulfur-reducing bacteria M. thermoacetica Nadia-3, that produce hydrogen sulfide during the oxidation of different organic compounds, were isolated from the rock of “Nadiia” pit heap. They reduce Fe(III), Cr(VI), NO3–, SO42-, S2O32-, besides elemental sulfur.


The Analyst ◽  
2015 ◽  
Vol 140 (6) ◽  
pp. 1772-1786 ◽  
Author(s):  
Zhi Guo ◽  
Guiqiu Chen ◽  
Guangming Zeng ◽  
Zhongwu Li ◽  
Anwei Chen ◽  
...  

The development of H2S fluorescence-sensing strategies and their potential applications in the determination of sulfate-reducing bacteria activity.


2021 ◽  
Vol 1 (1) ◽  
pp. 11-23
Author(s):  
Arjun Bhusal ◽  
Peter M. Muriana

In the US, sodium nitrate is used as a preservative and curing agent in processed meats and is therefore a regulated ingredient. Nitrate reducing bacteria (NRB) can convert vegetable nitrate into nitrite allowing green/clean label status in the US as per the USDA-FSIS definition of ‘natural nitrite’. The current ‘in-liquid’ test tube assay for detecting nitrite is not suitable for screening mixtures of bacteria nor is commercial nitrate broth suitable for growth of many Gram (+) bacteria. M17 broth was therefore used to develop M17-nitrate broth to be inclusive of Gram (+) bacteria. An ‘on-agar’ colony-screening assay was developed to detect the conversion of nitrate to nitrite on agar plates and could detect one NRB+ colony among ~300–500 colonies on a single plate. Samples that might have NRB were spread-plated on M17 agar plates, sandwiched with nitrate agar, and after incubation followed with sequential agar overlays containing the reagents used in the nitrate reduction assay; the appearance of red color zones above colonies indicated the presence of nitrite. NRB derived from various samples were confirmed for nitrate conversion and both nitrate and nitrite were quantified by C8 reversed-phase (RP) ion-pairing high performance liquid chromatography (HPLC) analysis (1 ppm limit of detection). Staphylococcus carnosus, a strain commonly used for nitrate reduction, was able to convert 1100 ppm M17-nitrate broth to 917 ppm nitrite. Staphylococcus caprae and Panteoa agglomerans, NRB isolated using the M17-nitrate agar assay, were also able to ferment the same broth to 916 ppm and 867 ppm nitrite, respectively. This is the first report of an on-agar colony screening assay for the detection and isolation of nitrite reducing bacteria allowing NRB to be readily isolated. This may allow for the identification of new bacteria that may have a more efficient process to generate nitrite, and possibly concomitant with production of additional natural antimicrobials, as vegetable nitrite becomes more widely used to prevent spore germination.


2020 ◽  
Vol 56 (5-6) ◽  
pp. 465-469
Author(s):  
F. R. Ismagilov ◽  
M. K. Dzheksenov ◽  
A. V. Kurochkin

2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Jacob M. Hilzinger ◽  
Vidhyavathi Raman ◽  
Kevin E. Shuman ◽  
Brian J. Eddie ◽  
Thomas E. Hanson

ABSTRACT The green sulfur bacteria ( Chlorobiaceae ) are anaerobes that use electrons from reduced sulfur compounds (sulfide, S 0 , and thiosulfate) as electron donors for photoautotrophic growth. Chlorobaculum tepidum , the model system for the Chlorobiaceae , both produces and consumes extracellular S 0 globules depending on the availability of sulfide in the environment. These physiological changes imply significant changes in gene regulation, which has been observed when sulfide is added to Cba. tepidum growing on thiosulfate. However, the underlying mechanisms driving these gene expression changes, i.e., the specific regulators and promoter elements involved, have not yet been defined. Here, differential RNA sequencing (dRNA-seq) was used to globally identify transcript start sites (TSS) that were present during growth on sulfide, biogenic S 0 , and thiosulfate as sole electron donors. TSS positions were used in combination with RNA-seq data from cultures growing on these same electron donors to identify both basal promoter elements and motifs associated with electron donor-dependent transcriptional regulation. These motifs were conserved across homologous Chlorobiaceae promoters. Two lines of evidence suggest that sulfide-mediated repression is the dominant regulatory mode in Cba. tepidum . First, motifs associated with genes regulated by sulfide overlap key basal promoter elements. Second, deletion of the Cba. tepidum 1277 ( CT1277 ) gene, encoding a putative regulatory protein, leads to constitutive overexpression of the sulfide:quinone oxidoreductase CT1087 in the absence of sulfide. The results suggest that sulfide is the master regulator of sulfur metabolism in Cba. tepidum and the Chlorobiaceae . Finally, the identification of basal promoter elements with differing strengths will further the development of synthetic biology in Cba. tepidum and perhaps other Chlorobiaceae . IMPORTANCE Elemental sulfur is a key intermediate in biogeochemical sulfur cycling. The photoautotrophic green sulfur bacterium Chlorobaculum tepidum either produces or consumes elemental sulfur depending on the availability of sulfide in the environment. Our results reveal transcriptional dynamics of Chlorobaculum tepidum on elemental sulfur and increase our understanding of the mechanisms of transcriptional regulation governing growth on different reduced sulfur compounds. This report identifies genes and sequence motifs that likely play significant roles in the production and consumption of elemental sulfur. Beyond this focused impact, this report paves the way for the development of synthetic biology in Chlorobaculum tepidum and other Chlorobiaceae by providing a comprehensive identification of promoter elements for control of gene expression, a key element of strain engineering.


2021 ◽  
pp. 139193
Author(s):  
Nong Li ◽  
Liqiang Zhao ◽  
Ying Wan ◽  
Xiaohang Deng ◽  
Xiangyu Huo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document