scholarly journals Genetic diversity of Ukrainian local pig breeds based on microsatellite markers

2018 ◽  
Vol 9 (2) ◽  
pp. 177-182 ◽  
Author(s):  
S. S. Kramarenko ◽  
S. I. Lugovoy ◽  
V. R. Kharzinova ◽  
V. Y. Lykhach ◽  
A. S. Kramarenko ◽  
...  

Preserving the current diversity of the living material on Earth is fundamental for the survival of future generations . A study was conducted to investigate the genetic diversity of Ukrainian local pig breeds. A total of 350 pigs representing five local pig breeds from Ukraine (Mirgorod – MIR, Poltava Meat – PM, Ukrainian Meat – UM, Ukrainian White Steppe – UWS and Ukrainian Spotted Steppe – USS) and one commercial breed (Duroc, DUR) were sampled. Twelve microsatellite loci (SW24, S0155, SW72, SW951, S0386, S0355, SW240, SW857, S0101, SW936, SW911 and S0228) were selected and belong to the list of microsatellite markers recommended by ISAG. The results indicate that there exists, in general, a high degree of genetic variability within the five Ukrainian local pig breeds. However, the genetic variability in the MIR and PM breeds was significantly lower (mean Na = 2.92–3.92; Ho = 0.382–0.411; FIS = 0.178–0.184) than in the other three Ukrainian local pig breeds – UM, UWS and USS (mean Na = 5.00–8.42; Ho = 0.549–0.668; FIS = 0.027–0.066). Thirty-four private alleles were identified among the six analyzed genetic groups which were distributed between 11 of the 12 loci. A high number of alleles typical for the breed (private alleles) was observed in Duroc pigs – 9 alleles did not occur in Ukrainian local pig breeds. The HWE test showed that all of the polymorphic loci deviated from HWE (P < 0.05) in at least one population. Loci S0355 (5), S0386 (4) and SW24 (4) presented a higher number of populations in imbalance. The mean FST showed that approximately 77.8% of the genetic variation was within-population and 12.2% was across the populations. The five Ukrainian local breeds were classified into two major groups, according to the phylogenetic tree, which was based on standard genetic distance. Overall, we found that 92.6% of the individual pigs were correctly assigned (324 out of 350) to the respective breed of origin, which is likely a consequence of the well-defined breed structure. Probabilities from the allocation test of individuals for the six pig genetic groups were estimated with Structure Harvester. In cluster 1 the highest grouping probabilities were found for the MIR (0.917) and PM (0.750) breeds. Local breeds UM (0.824) and USS (0.772) were grouped in cluster 2. Cluster 3 was related to the local pig breed USW (0.873). Cluster 4 presented high allocation probabilities for the commercial pig breed Duroc (0.924). The obtained results are important for the future conservation of Ukrainian local pig breeds.

2011 ◽  
Vol 54 (1) ◽  
pp. 51-60
Author(s):  
R. Židek ◽  
D. Jakabová ◽  
J. Trandžík ◽  
J. Buleca ◽  
D. Takáčová ◽  
...  

Abstract. The aim of presented study was estimation of genetic relationship within and between 3 mentioned pig breeds bred in the Slovak Republic. Genetic variability at 10 microsatellite loci (SW24, SO107, SO068, SW936, sw353, so386, so355, sw72, tnfb, and SO070) was analysed in 412 pigs of Landrace, Yorkshire and Slovak White Improved breeds. Variation amount of each population was measured with average number of alleles per locus, heterozygosities, polymorphism information content (PIC) value were calculated. Phylogenetic trees were constructed by UPGMA. The average number of alleles per locus was 11.5, ranging from 7 (SW72) to 16 (SO068). The Slovak White Improved, Landrace and Yorkshire pig breeds showed out high degree of genetic diversity with mean expected heterozygosities of 0.720, 0.697 and 0.705 respectively. Genetic distance ranged from 0.060 between Yorkshire and Slovak White Improved to 0.203 between Landrace and Slovak White Improved breeds. The scatter diagram from principal component displayed genetic differentiation among all three breeds. A Bayesian method was applied for individual assigning testing. On the base of our results the group of Slovak White Improved population was strongly mixed with Yorkshire breed and the group of all Landrace individuals was presented as enclosed population.


2014 ◽  
Vol 12 (S1) ◽  
pp. S125-S129
Author(s):  
Gi-An Lee ◽  
Sok-Young Lee ◽  
Ho-Sun Lee ◽  
Kyung-Ho Ma ◽  
Jae-Gyun Gwag ◽  
...  

The RDA Genebank at the National Agrobiodiversity Center (NAAS, RDA, Republic of Korea) has conserved about 182,000 accessions in 1777 species and is working at preserving agricultural genetic resources for the conservation and sustainable utilization of genetic diversity. The detection of genetic variability in conserved resources is important for germplasm management, but the molecular evaluation tools providing genetic information are insufficient for underutilized crops, unlike those for major crops. In this regard, the Korean National Agrobiodiversity Center has been developing microsatellite markers for several underutilized crops. We designed 3640 primer pairs flanking simple sequence repeat (SSR) motifs for 6310 SSR clones in 21 crop species. Polymorphic loci were revealed in each species (7–36), and the mean ratio of polymorphic loci to all the loci tested was 12%. The average allele number was 5.1 (2.8–10.3) and the expected heterozygosity 0.51 (0.31–0.74). Some SSRs were transferable to closely related species, such as within the genera Fagopyrum and Allium. These SSR markers might be used for studying the genetic diversity of conserved underutilized crops.


2017 ◽  
Vol 1 (01) ◽  
pp. 46-51
Author(s):  
OUMER SHERIFF ◽  
KEFYALEW ALEMAYEHU

Sheriff O, Alemayehu K. 2017. Review: Genetic diversity studies using microsatellite markers and their contribution in supporting sustainable sheep breeding programs. Asian J Agric 1: 46-51. Microsatellites have been widely accepted and employed as useful molecular markers for measuring genetic diversity and divergence within and among populations. The various parameters developed so far to measure genetic diversity within and among populations are observed and expected heterozygosities (Ho and He), the mean number of alleles per locus (MNA),polymorphic information content (PIC), genetic distance and phylogenetic or tree building approach.The objective of thisreview was therefore to quantifythe genetic diversity studies of domestic sheep populations using microsatellite markersand their contribution in supporting sustainable sheep breeding programs. From the review, it is possible to see that there was high within population genetic variations in all the studied sheep populations, poor level of population differentiations and high levels of inbreeding. On the other hand, low estimates of hetrozygosities and mean number of alleles and employing only few and weak markers were observed in some of the studies. The gaps observed in the previous genetic diversity studies of the sheep populations may demand further works to reveal more information on the population structures andto start appropriate and sustainable breeding programs.


2013 ◽  
Vol 13 (4) ◽  
pp. 356-362 ◽  
Author(s):  
Francisco Elias Ribeiro ◽  
Luc Baudouin ◽  
Patricia Lebrun ◽  
Lázaro José Chaves ◽  
Claudio Brondani ◽  
...  

The tall coconut palm was introduced in Brazil in 1553, originating from the island of Cape Verde. The aim of the present study was to evaluate the genetic diversity of ten populations of Brazilian tall coconut by 13 microsatellite markers. Samples were collected from 195 individuals of 10 different populations. A total of 68 alleles were detected, with an average of 5.23 alleles per locus. The mean expected and observed heterozygosity value was 0.459 and 0.443, respectively. The number of alleles per population ranged from 36 to 48, with a mean of 40.9 alleles. We observed the formation of two groups, the first formed by the populations of Baía Formosa, Georgino Avelino and São José do Mipibu, and the second by the populations of Japoatã, Pacatuba and Praia do Forte. These results reveal a high level of genetic diversity in the Brazilian populations.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Salvatore Bordonaro ◽  
Anna Maria Guastella ◽  
Andrea Criscione ◽  
Antonio Zuccaro ◽  
Donata Marletta

The genetic variability of Pantesco and other two Sicilian autochthonous donkey breeds (Ragusano and Grigio Siciliano) was assessed using a set of 14 microsatellites. The main goals were to describe the current differentiation among the breeds and to provide genetic information useful to safeguard the Pantesco breed as well as to manage Ragusano and Grigio Siciliano. In the whole sample, that included 108 donkeys representative of the three populations, a total of 85 alleles were detected. The mean number of alleles was lower in Pantesco (3.7), than in Grigio Siciliano and Ragusano (4.4 and 5.9, resp.). The three breeds showed a quite low level of gene diversity (He) ranging from 0.471 in Pantesco to 0.589 in Grigio. The overall genetic differentiation index (Fst) was quite high; more than 10% of the diversity was found among breeds. Reynolds’ () genetic distances, correspondence, and population structure analysis reproduced the same picture, revealing that, (a) Pantesco breed is the most differentiated in the context of the Sicilian indigenous breeds, (b) within Ragusano breed, two well-defined subgroups were observed. This information is worth of further investigation in order to provide suitable data for conservation strategies.


2010 ◽  
Vol 24 (1) ◽  
pp. 28-36 ◽  
Author(s):  
J. Y. Wang ◽  
J. F. Guo ◽  
Q. Zhang ◽  
H. M. Hu ◽  
H. C. Lin ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Dominga Soglia ◽  
Stefano Sartore ◽  
Emiliano Lasagna ◽  
Cesare Castellini ◽  
Filippo Cendron ◽  
...  

The preservation of genetic variability of autochthonous poultry breeds is crucial in global biodiversity. A recent report revealed small breed size and potential risk of extinction of all native Italian poultry breeds; therefore, a correct assessment of their genetic diversity is necessary for a suitable management of their preservation. In this work, we provided an overview of the contribution to poultry biodiversity of some Italian autochthonous breeds reared in conservation centers devoted to local biodiversity preservation. The level of genetic diversity, molecular kinship, inbreeding, contribution to overall genetic diversity, and rate of extinction of each breed were analyzed with a set of 14 microsatellite loci in 17 autochthonous chicken breeds. To evaluate genetic variability, total number (Na), and effective number (Ne) of alleles, observed (Ho) and expected (He) heterozygosity, and F (Wright’s inbreeding coefficient) index were surveyed. The contribution of each analyzed breed to genetic diversity of the whole dataset was assessed using MolKin3.0; global genetic diversity and allelic richness contributions were evaluated. All the investigated loci were polymorphic; 209 alleles were identified (94 of which private alleles). The average number of alleles per locus was 3.62, and the effective number of alleles was 2.27. The Ne resulted lower in all breeds due to the presence of low-frequency alleles that can be easily lost by genetic drift, thus reducing the genetic variability of the breeds, and increasing their risk of extinction. The global molecular kinship was 27%, the average breed molecular kinship was 53%, and the mean inbreeding rate 43%, with a self-coancestry of 78%. Wright’s statistical analysis showed a 41% excess of homozygous due to breed genetic differences (34%) and to inbreeding within the breed (9%). Genetic variability analysis showed that 11 breeds were in endangered status. The contribution to Italian poultry genetic diversity, estimated as global genetic diversity, and ranged from 30.2 to 98.5%. In conclusion, the investigated breeds maintain a unique genetic pattern and play an important role in global Italian poultry biodiversity, providing a remarkable contribution to genetic variability.


2004 ◽  
Vol 17 (9) ◽  
pp. 1219-1222 ◽  
Author(s):  
X. Wang ◽  
H. H. Cao ◽  
S. M. Geng ◽  
H. B. Li

2011 ◽  
Vol 54 (4) ◽  
pp. 419-429
Author(s):  
S. Kusza ◽  
S. Mihók ◽  
L. Czeglédi ◽  
A. Jávor ◽  
M. Árnyasi

Abstract. The aim of the study was to provide information on the genetic variability of the Hungarian Bronze turkey gene reserve population and its difference from the Broad-breasted turkey, and offer guidance and proposals for its future conservation strategies. Altogether, 239 Hungarian Bronze turkeys from 10 strains and 13 Broad-breasted turkeys as a control population were genotyped for 15 microsatellites. All loci were polymorphic with the average number of alleles per locus 3.20±1.146 in the Hungarian Bronze turkey. The mean expected (Hexp) and observed heterozygosity (Hobs) were not different (0.392 and 0.376, respectively) in the overall population, and similar values were obtained for hens and bucks and among hen strains. Inbreeding coefficient (FIS) and Shannon index (I) indicated that there was low inbreeding within hens and bucks. Our results confirm that the genetic diversity in the Hungarian Bronze turkey population has been preserved by the rotational mating system. Differences between the Hungarian Bronze turkey and the Broad-breasted turkey populations were determined. Nei’s unbiased values clearly indicated that the two populations are highly genetically differentiated.


Author(s):  
Weiwei Ni ◽  
An Jiang ◽  
Jian Zhang ◽  
Guangxin E ◽  
Yongfu Huang

Cattle are the main source of meat in Chongqing. This study investigated the genetic diversity of cattle native to Chongqing and 4 introduced breeds. A total of 96 individuals from 5 breeds were genotyped using six microsatellite markers. Five markers were highly polymorphic within the breed populations, and one marker had moderate levels of polymorphism. Heterozygosity ranged from 0.5379±0.0434 in Simmental to 0.6667±0.0559 in Charolais. The heterozygosity deficit was significant in all populations analyzed compared with the expected level of heterozygosity. In addition, two microsatellite markers (TGLA53 and OarFCB20) deviated from Hardy-Weinberg equilibrium across populations (except in cattle native to Chongqing). The mean number of alleles ranged from 6.00±2.37 in Angus to 7.17±2.14 in Droughtmaster across six markers. The coefficient of inbreeding ranged from 0.0017 in Simmental and Droughtmaster to 0.0367 in Angus. Pairwise difference analyses revealed that Simmental and Droughtmaster were the most differentiated (FST= 0.06861) from each other, whereas cattle native to Chongqing and Charolais were the least differentiated (FST= 0.00557). In summary, this study showed that cattle native to Chongqing and 4 introduced breeds were genetically well protected in Chongqing, and information from this study would be helpful for guiding hybridization and genetic improvements in the future.


Sign in / Sign up

Export Citation Format

Share Document