Microsatellite marker-based estimation of the genetic diversity of cattle in Chongqing

Author(s):  
Weiwei Ni ◽  
An Jiang ◽  
Jian Zhang ◽  
Guangxin E ◽  
Yongfu Huang

Cattle are the main source of meat in Chongqing. This study investigated the genetic diversity of cattle native to Chongqing and 4 introduced breeds. A total of 96 individuals from 5 breeds were genotyped using six microsatellite markers. Five markers were highly polymorphic within the breed populations, and one marker had moderate levels of polymorphism. Heterozygosity ranged from 0.5379±0.0434 in Simmental to 0.6667±0.0559 in Charolais. The heterozygosity deficit was significant in all populations analyzed compared with the expected level of heterozygosity. In addition, two microsatellite markers (TGLA53 and OarFCB20) deviated from Hardy-Weinberg equilibrium across populations (except in cattle native to Chongqing). The mean number of alleles ranged from 6.00±2.37 in Angus to 7.17±2.14 in Droughtmaster across six markers. The coefficient of inbreeding ranged from 0.0017 in Simmental and Droughtmaster to 0.0367 in Angus. Pairwise difference analyses revealed that Simmental and Droughtmaster were the most differentiated (FST= 0.06861) from each other, whereas cattle native to Chongqing and Charolais were the least differentiated (FST= 0.00557). In summary, this study showed that cattle native to Chongqing and 4 introduced breeds were genetically well protected in Chongqing, and information from this study would be helpful for guiding hybridization and genetic improvements in the future.

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1067
Author(s):  
Emel Özkan Ünal ◽  
Raziye Işık ◽  
Ayşe Şen ◽  
Elif Geyik Kuş ◽  
Mehmet İhsan Soysal

The present study was aimed to investigate the genetic diversity among 17 Turkish water buffalo populations. A total of 837 individuals from 17 provincial populations were genotyped, using 20 microsatellites markers. The microsatellite markers analyzed were highly polymorphic with a mean number of alleles of (7.28) ranging from 6 (ILSTS005) to 17 (ETH003). The mean observed and expected heterozygosity values across all polymorphic loci in all studied buffalo populations were 0.61 and 0.70, respectively. Observed heterozygosity varied from 0.55 (Bursa (BUR)) to 0.70 (Muş (MUS)). It was lower than expected heterozygosity in most of the populations indicating a deviation from Hardy–Weinberg equilibrium. The overall value for the polymorphic information content of noted microsatellite loci was 0.655, indicating their suitability for genetic diversity analysis in buffalo. The mean FIS value was 0.091 and all loci were observed significantly deviated from Hardy–Weinberg Equilibrium (HWE), most likely based on non-random breeding. The 17 buffalo populations were genetically less diverse as indicated by a small mean FST value (0.032 ± 0.018). The analysis of molecular variance (AMOVA) analysis indicated that about 2% of the total genetic diversity was clarified by population distinctions and 88 percent corresponded to differences among individuals. The information produced by this study can be used to establish a base of national conservation and breeding strategy of water buffalo population in Turkey.


Author(s):  
Ahmed H. Mahmoud ◽  
Faisal M. Abou Tarboush ◽  
Ahmed Rady ◽  
Khalid M. Al-Anaz Mohammad Abul Farah ◽  
Osama B. Mohammed

The present study was conducted to know the genetic diversity of three Saudi sheep populations; Naeimi (NM), Herri (H) and Najdi (NJ). Genomic DNA was extracted from 156 animals of sheep comprising 47 Naeimi, 47 Herri and 62 Najdi breeds using 18 microsatellite markers. A total of 212 alleles were generated with a mean value of 11.80 alleles per locus, with a range of observed and expected heterozygosity of 0.505 to 0.875 and 0.595 to 0.854, respectively. Eleven of the microsatellites loci studied in NM, three loci in H and fifteen loci in NJ were observed to be deviated from Hardy-Weinberg equilibrium. The fixation genetic indices (Fst) among the three sheep populations were very low, ranging from 0.017 (between NJ and H) to 0.033 (between NJ and NM), indicating low population differentiation among the three sheep populations studied. The present study showed that the microsatellite markers are powerful tool in determining genetic diversity among sheep populations.


2014 ◽  
Vol 12 (S1) ◽  
pp. S125-S129
Author(s):  
Gi-An Lee ◽  
Sok-Young Lee ◽  
Ho-Sun Lee ◽  
Kyung-Ho Ma ◽  
Jae-Gyun Gwag ◽  
...  

The RDA Genebank at the National Agrobiodiversity Center (NAAS, RDA, Republic of Korea) has conserved about 182,000 accessions in 1777 species and is working at preserving agricultural genetic resources for the conservation and sustainable utilization of genetic diversity. The detection of genetic variability in conserved resources is important for germplasm management, but the molecular evaluation tools providing genetic information are insufficient for underutilized crops, unlike those for major crops. In this regard, the Korean National Agrobiodiversity Center has been developing microsatellite markers for several underutilized crops. We designed 3640 primer pairs flanking simple sequence repeat (SSR) motifs for 6310 SSR clones in 21 crop species. Polymorphic loci were revealed in each species (7–36), and the mean ratio of polymorphic loci to all the loci tested was 12%. The average allele number was 5.1 (2.8–10.3) and the expected heterozygosity 0.51 (0.31–0.74). Some SSRs were transferable to closely related species, such as within the genera Fagopyrum and Allium. These SSR markers might be used for studying the genetic diversity of conserved underutilized crops.


2017 ◽  
Vol 1 (01) ◽  
pp. 46-51
Author(s):  
OUMER SHERIFF ◽  
KEFYALEW ALEMAYEHU

Sheriff O, Alemayehu K. 2017. Review: Genetic diversity studies using microsatellite markers and their contribution in supporting sustainable sheep breeding programs. Asian J Agric 1: 46-51. Microsatellites have been widely accepted and employed as useful molecular markers for measuring genetic diversity and divergence within and among populations. The various parameters developed so far to measure genetic diversity within and among populations are observed and expected heterozygosities (Ho and He), the mean number of alleles per locus (MNA),polymorphic information content (PIC), genetic distance and phylogenetic or tree building approach.The objective of thisreview was therefore to quantifythe genetic diversity studies of domestic sheep populations using microsatellite markersand their contribution in supporting sustainable sheep breeding programs. From the review, it is possible to see that there was high within population genetic variations in all the studied sheep populations, poor level of population differentiations and high levels of inbreeding. On the other hand, low estimates of hetrozygosities and mean number of alleles and employing only few and weak markers were observed in some of the studies. The gaps observed in the previous genetic diversity studies of the sheep populations may demand further works to reveal more information on the population structures andto start appropriate and sustainable breeding programs.


2013 ◽  
Vol 13 (4) ◽  
pp. 356-362 ◽  
Author(s):  
Francisco Elias Ribeiro ◽  
Luc Baudouin ◽  
Patricia Lebrun ◽  
Lázaro José Chaves ◽  
Claudio Brondani ◽  
...  

The tall coconut palm was introduced in Brazil in 1553, originating from the island of Cape Verde. The aim of the present study was to evaluate the genetic diversity of ten populations of Brazilian tall coconut by 13 microsatellite markers. Samples were collected from 195 individuals of 10 different populations. A total of 68 alleles were detected, with an average of 5.23 alleles per locus. The mean expected and observed heterozygosity value was 0.459 and 0.443, respectively. The number of alleles per population ranged from 36 to 48, with a mean of 40.9 alleles. We observed the formation of two groups, the first formed by the populations of Baía Formosa, Georgino Avelino and São José do Mipibu, and the second by the populations of Japoatã, Pacatuba and Praia do Forte. These results reveal a high level of genetic diversity in the Brazilian populations.


2018 ◽  
Vol 9 (2) ◽  
pp. 177-182 ◽  
Author(s):  
S. S. Kramarenko ◽  
S. I. Lugovoy ◽  
V. R. Kharzinova ◽  
V. Y. Lykhach ◽  
A. S. Kramarenko ◽  
...  

Preserving the current diversity of the living material on Earth is fundamental for the survival of future generations . A study was conducted to investigate the genetic diversity of Ukrainian local pig breeds. A total of 350 pigs representing five local pig breeds from Ukraine (Mirgorod – MIR, Poltava Meat – PM, Ukrainian Meat – UM, Ukrainian White Steppe – UWS and Ukrainian Spotted Steppe – USS) and one commercial breed (Duroc, DUR) were sampled. Twelve microsatellite loci (SW24, S0155, SW72, SW951, S0386, S0355, SW240, SW857, S0101, SW936, SW911 and S0228) were selected and belong to the list of microsatellite markers recommended by ISAG. The results indicate that there exists, in general, a high degree of genetic variability within the five Ukrainian local pig breeds. However, the genetic variability in the MIR and PM breeds was significantly lower (mean Na = 2.92–3.92; Ho = 0.382–0.411; FIS = 0.178–0.184) than in the other three Ukrainian local pig breeds – UM, UWS and USS (mean Na = 5.00–8.42; Ho = 0.549–0.668; FIS = 0.027–0.066). Thirty-four private alleles were identified among the six analyzed genetic groups which were distributed between 11 of the 12 loci. A high number of alleles typical for the breed (private alleles) was observed in Duroc pigs – 9 alleles did not occur in Ukrainian local pig breeds. The HWE test showed that all of the polymorphic loci deviated from HWE (P < 0.05) in at least one population. Loci S0355 (5), S0386 (4) and SW24 (4) presented a higher number of populations in imbalance. The mean FST showed that approximately 77.8% of the genetic variation was within-population and 12.2% was across the populations. The five Ukrainian local breeds were classified into two major groups, according to the phylogenetic tree, which was based on standard genetic distance. Overall, we found that 92.6% of the individual pigs were correctly assigned (324 out of 350) to the respective breed of origin, which is likely a consequence of the well-defined breed structure. Probabilities from the allocation test of individuals for the six pig genetic groups were estimated with Structure Harvester. In cluster 1 the highest grouping probabilities were found for the MIR (0.917) and PM (0.750) breeds. Local breeds UM (0.824) and USS (0.772) were grouped in cluster 2. Cluster 3 was related to the local pig breed USW (0.873). Cluster 4 presented high allocation probabilities for the commercial pig breed Duroc (0.924). The obtained results are important for the future conservation of Ukrainian local pig breeds.


2004 ◽  
Vol 52 (3) ◽  
pp. 259-265
Author(s):  
Daniela Šátková-Jakabová ◽  
J. Trandžík ◽  
Ľudmila Hudecová-Kvasňáková ◽  
Erika Hegedüšová-Zetochová ◽  
A. Bugarský ◽  
...  

Genetic variation at six microsatellite loci was analysed for five Thoroughbred subpopulations to determine the magnitude of genetic differentiation and the genetic relationships among the subpopulations. Significant deviations from Hardy-Weinberg equilibrium were shown for a number of locus-population combinations, with all subpopulations. The genetic diversities and relationships of five Thoroughbred subpopulations were evaluated using six microsatellites recommended by the International Society of Animal Genetics (ISAG). The allele frequencies, the effective numbers of alleles, and the observed and expected heterozygosities were calculated. POPGENE v. 1.31 (Yeh et al., 1997) was used to test for deviations from the Hardy-Weinberg (H-W) equilibrium and to assign FIS estimates (Weir, 1990). The utility of microsatellites for evaluating genetic diversity of horses is discussed.


2009 ◽  
Vol 44 ◽  
pp. 45-55 ◽  
Author(s):  
O.D. Koudandé ◽  
G. Dossou-Gbété ◽  
F. Mujibi ◽  
H. Kibogo ◽  
D. Mburu ◽  
...  

SummaryGenetic diversity and Zebu genetic introgression have been assessed in five subpopulations of cattle along the coastal region of Togo, Benin and Nigeria using 15 autosomal and one Y- specific microsatellite markers. Mean observed heterozygosity (Ho) ranges from 0.55 to 0.61 and the mean number of alleles (MNA) from 5.47 to 6.47. Genetic differentiation indexes (Fst), were significant between the five subpopulations (P< 0.01). Some possible population diagnostic alleles are identified with allele 254 at locus ILSTS033 and allele 182 at locus ILSTS005 found only in the population from Togo with frequencies of 5.41% and 12.82% respectively. Allele 226 of locus ILSTS103 is fixed in the Togolese population (100%) and almost fixed (98.75%) in the Benin-Valley population. Y chromosome analysis reveals male Zebu introgression in all five populations with a frequency of indicine Y chromosome ranging from 37.5% in Benin-Valley and Benin Plateau East to 100% for Benin Plateau West. Admixture analysis using the programme STRUCTURE (k = 2) confirms phenotypic observations suggesting different level of taurine background and therefore Zebu introgression amongst the populations. Within populations, variations in levels of Zebu admixture between herds were also detected. Whereas the valley population from Benin shows low level of Zebu introgression, it is the population from Benin Plateau East which is the purest.


2017 ◽  
Vol 9 (6) ◽  
pp. 10261
Author(s):  
E. M.L. Ekanayake ◽  
T. Kapurusinghe ◽  
M. M. Saman ◽  
D. S. Rathnakumara ◽  
P. Samaraweera ◽  
...  

We determined the genetic diversity of the Green Turtle Chelonia mydas (Linneaus, 1758) nesting at Kosgoda rookery, the second largest sea turtle aggregation on the southwestern coast of Sri Lanka.  Skin tissue samples were collected from 68 nesting females and genetic diversity was estimated using six microsatellite loci.  High genetic diversity was observed within the population as all loci analyzed were highly polymorphic with a total of 149 alleles observed.  The mean number of alleles per locus was 24.7 and the mean observed and expected heterozygosity across all loci were 0.75 and 0.93, respectively.  It appears that five out of six loci were not in Hardy-Weinberg equilibrium, while micro-checker analysis suggested that the Kosgoda Green Turtle population was possibly in equilibrium.  The viability of a population is unlikely to be reduced if high genetic diversity is maintained within it.  Although the Green Turtle population nesting at Kosgoda is small compared to other nesting rookeries in the world, the high genetic diversity observed suggests that the population may not be undergoing a bottleneck.


2021 ◽  
Vol 8 ◽  
Author(s):  
Haitao Ma ◽  
Dongmei Yu ◽  
Shu Xiao ◽  
Yanping Qin ◽  
Yang Zhang ◽  
...  

The noble scallop, Chlamys nobilis, is an important bivalve mollusk with high commercial value and is usually farmed in the waters of southern China. To date, very little is known about the genetic diversity and population structure of C. nobilis. In this study, 10 microsatellite loci of four farmed C. nobilis populations were compared with one another and compared wild population in southern China. A total of 83 alleles were found. Surprisingly, the level of genetic diversity of the farmed C. nobilis populations was higher than that of the wild population. Although the population genetic of wild population was completely in the Hardy–Weinberg equilibrium, due to heterozygote deficiency, significant deviations from the Hardy–Weinberg equilibrium were found in all farmed populations, suggesting a genetic admixture caused by the mixing of seeds from various hatcheries. The Fst and AMOVA values showed significant genetic differences between wild and farmed populations. The Bayesian assignment also confirmed that genetic admixture was significant and widespread in artificial breeding of C. nobilis. Furthermore, the UPGMA tree topology and PCA demonstrated that the genetic diversity of wild population can be clearly distinguished from farmed populations. In a nutshell, the findings of this study not only fill the knowledge gaps in genetic diversity of wild and farmed C. nobilis populations, but also serve as a guide for maintaining the genetic diversity of C. nobilis in both farmed and wild populations.


Sign in / Sign up

Export Citation Format

Share Document