scholarly journals Estimation of soil organic carbon (SOC) at different soil depths and soil use in the Sumapaz paramo, Cundinamarca - Colombia

2016 ◽  
Vol 66 (1) ◽  
Author(s):  
Carmen Rosa Montes ◽  
José Joaquin Ramos Miras ◽  
Ana María San José Wery

The vertical distribution of soil organic carbon (SOC), considered to be a key component of the carbon cycle, is still poorly understood in tropical highest mountain ecosystems such as the Andean paramo. The estimation of the SOC in the presence and absence of anthropic intervention, will help to define policies to mitigate CO2 emissions into the atmosphere from this ecosystem. The aim of this research was to determine soil organic carbon sequestration at three soil depths under two types of soil use in the paramo of Sumapaz, Colombia. The soil variations of pH, phosphorus, aluminum, bulk density, carbon sequestration, cation exchange capacity, texture and to estimate the vertical distribution of soil organic carbon SOC, were evaluated, respectively. Two sites were selected to establish the soil estimations according to soil use: natural vegetation cover and potato (Solanum tuberosum L.) crop. Samples were taken from 0-25, 25-50 and > 50 cm soil depths. Consequently, eight physical-chemical variables were analyzed in terms of the SOC sequestration estimated for each soil depth and soil. The averages for SOC under natural vegetation cover were: 188 tC.ha-1 to 25 cm, 183 tC.ha-1 to 50 cm, and 178 tC.ha-1 at soil depths below 50cm. For potato (Solanum tuberosum L.) crops, SOC sequestration were: 119 tC.ha-1 to 25 cm, 83 tC.ha-1 to 50 cm, and 71.8 tC.ha-1 at soil depths below 50cm. These results allow to support the soil management strategies that addressed to preserve SOC and regulate water level within the ecosystem of the Andean paramo.

2014 ◽  
Vol 28 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Majid Mahmoodabadi ◽  
Elina Heydarpour

Abstract Soil organic carbon is one of the most important soil components, which acts as a sink for atmospheric CO2. This study focuses on the effect of different methods of organic matter application on the soil organic carbon sequestration in a 4-month experiment under controlled greenhouse conditions. Three rates of straw residue and farmyard manure were added to uncultivated and cropland soils. Two treatments of straw residue and farmyard manure incorporation were used into: a soil surface layer and 0-20 cm soil depth. The result showed that the application of organic matter, especially the farmyard manure incorporation led to a significant increase in the final soil organic carbon content. Higher amounts of soil organic carbon were stored in the cropland soil than in the uncultivated soil. On average, the soil surface layer treatment caused a higher sequestration of soil organic carbon compared to the whole soil depth treatment. If higher rates of organic matter were added to the soils, lower carbon sequestration was observed and vice versa. The result indicated that the carbon sequestration ranged farmyardmanure > strawresidue and cropland soil > uncultivated soil. The findings of this research revealed the necessity of paying more attention to the role of organic residue management in carbon sequestration and prevention of increasing global warming.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1304
Author(s):  
Shengsheng Xiao ◽  
Jie Zhang ◽  
Jian Duan ◽  
Hongguang Liu ◽  
Cong Wang ◽  
...  

Degraded soil has a high carbon sink potential. However, the carbon sequestration capacity and efficiency of comprehensive control measures in soil erosion areas are still not fully understood, and this information is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon and active carbon components under the impact of soil erosion measures and reforestation following different restoration ages. A small watershed with four typical restored plots following the same control measures (combination measures with horizontal bamboo burl-groove + replanting trees, shrubs and grasses) but different restoration ages (4 years, 14 years, 24 years and 34 years) and two reference plots (bare land (carbon-depleted) and nearby undisturbed forest (carbon-enriched)) in subtropical China was studied. The results showed that the soil organic carbon contents at a 1 m soil depth and the dissolved organic carbon and microbial biomass carbon concentrations in the upper 60 cm of soils of the four restored lands were higher than those in the bare land. Furthermore, the restored lands of 4 years, 14 years, 24 years and 34 years had soil organic carbon stocks in the 1 m soil depth of 22.83 t hm−2, 21.87 t hm−2, 32.77 t hm−2 and 39.65 t hm−2, respectively, which were higher than the bare land value of 19.86 t hm−2 but lower than the undisturbed forestland value of 75.90 t hm−2. The restored forestlands of 34 years of ecological restoration also had a high potential of being a soil organic carbon sink. Compared to the bare land, the restored lands of 4 years, 14 years, 24 years and 34 years had soil organic carbon sequestration capacities of 2.97 t hm−2, 2.01 t hm−2, 12.91 t hm−2 and 19.79 t hm−2, respectively, and had soil organic carbon sequestration rates of 0.74 t hm−2 a−1, 0.14 t hm−2 a−1, 0.54 t hm−2 a−1 and 0.58 t hm−2 a−1, respectively. Our results indicated that the combined measures of horizontal bamboo burl-groove and revegetation could greatly increase carbon sequestration and accumulation. Suitable microtopography modification and continuous organic carbon sources from vegetation are two main factors influencing soil organic carbon recovery. Combination measures, which can provide suitable topography and a continuous soil organic carbon supply, could be considered in treating degraded soils caused by water erosion in red soil areas.


2014 ◽  
Vol 962-965 ◽  
pp. 1386-1391
Author(s):  
Li Li Huo ◽  
Xian Guo Lv ◽  
Da Song Lin

To investigate how reclamation of wetlands in three different soil types impacts the vertical distribution of soil organic carbon (SOC) content in soil profiles, contents and density of soil organic carbon (SOC) in soil profiles of three types of wetland soils in wetland, soybean and paddy field in Sanjiang Plain were determined. Both soybean and paddy field were reclaimed from wetland. We observed that reclamation significantly reduced SOC content in 0-10,10-20 and 20-30 cm soil layers in meadow albic soil and meadow marsh soil, and 0-10,10-20,20-30 and 30-40 cm soil layers in peat bog soil, there were no significant difference in SOC contents in soil layers under 0-30 or 0-40 cm before and after reclamation. After reclamation, SOC density in three types of wetland soils decreased, and SOC density in soybean field were higher than that in paddy field. Either in wetlands or farm lands in the three types of wetland soils, most of the SOC storage in 0-100 cm soil layer was stored in 0-50 cm soil layer. Though wetland reclamation reduced the SOC content, it hasn’t changed the regularity of SOC vertical distribution. The relationships between SOC content and soil depth in wetlands and farm lands all could be described by exponential functions in three types of soils. The specific functions are useful to estimate and predict the regional SOC pool by models.


Sign in / Sign up

Export Citation Format

Share Document